Advertisement

Microwave dielectric properties of (1 − x)Mg(Sn0.05Ti0.95)O3–x(Ca0.8Sr0.2)TiO3–y wt% ZnNb2O6 ceramics with near-zero temperature coefficient

  • Wentao Xie
  • Hongqing Zhou
  • Haikui Zhu
  • Jianxin Zhao
  • Luchao Ren
  • Fang Huang
  • Lei Qian
Article

Abstract

The microstructures and the microwave dielectric properties of (1 − x)Mg(Sn0.05Ti0.95)O3–x(Ca0.8Sr0.2)TiO3−y wt% ZnNb2O6 (x = 0.05–0.08, y = 2–8) ceramics system prepared by conventional solid-state route were investigated. The crystalline phases and the microstructures of the ceramics were characterized by means of X-ray diffraction and scanning electron microscopy. Zn2+ partially replaced Mg2+ in Mg(Sn0.05Ti0.95)O3 and formed the ilmenite-type (Mg1−δZnδ)(Sn0.05Ti0.95)O3 phase. Second phase (Mg1−δZnδ)(Sn0.05Ti0.95)2O5 increased remarkably when excess ZnNb2O6 added. ZnNb2O6 as additives could not only effectively lower the sintering temperature of the ceramics to 1320 °C, but also promote the densification. The microwave dielectric properties of specimens were strongly related to ZnNb2O6 and (Ca0.8Sr0.2)TiO3 content. The optimized microwave dielectric properties with ε r  ~ 22.13, Q × f value ~60,613(at 7 GHz) and τ f value ~0.4 ppm/ °C were achieved for (1 − x)Mg(Sn0.05Ti0.95)O3–x(Ca0.8Sr0.2)TiO3–y wt% ZnNb2O6 (x = 0.07, y = 4) sintered at 1320 °C for 2 h.

Keywords

Resonant Frequency Sinter Temperature Unit Cell Volume Apparent Density High Dielectric Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions and Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT), IRT1146.

References

  1. 1.
    I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J Am Ceram Soc 89, 2063–2072 (2006)Google Scholar
  2. 2.
    P.V. Bijumon, A.P. Freundorfer, M. Sayer, Y.M.M. Antar, High gain on-chip dielectric resonator antennas using silicon technology for millimeter wave wireless links. in Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering, CCECE, (2007) 804Google Scholar
  3. 3.
    R.C. Kell, A.C. Greenham, G.C.E. Olds, High-permittivity temperature stable ceramic dielectrics with low microwave loss. J Am Ceram Soc 56, 352 (1973)CrossRefGoogle Scholar
  4. 4.
    K. Wakino, Recent development of dielectric resonator materials and filters in Japan. Ferroelectrics 91, 69 (1989)CrossRefGoogle Scholar
  5. 5.
    C.F. Tseng, Relationships between Zr substitution for Ti and microwave dielectric properties in Mg(ZrxTi1−x)O3 ceramics. J. Alloys Compd. 39, 9447 (2011)CrossRefGoogle Scholar
  6. 6.
    M. Zhang, L. Li, W. Xia et al., Structure and properties analysis for MgTiO3 and (Mg0.97M0.03) TiO3(M=Ni, Zn, Co and Mn) microwave dielectric materials. J. Alloys Compd. 537, 76 (2012)CrossRefGoogle Scholar
  7. 7.
    C.L. Huang, Y.W. Tseng, J.Y. Chen et al., Dielectric properties of high-Q (Mg1−xZnx)1.8Ti1.1O4 ceramics at microwave frequency. J. Eur. Ceram. Soc. 32, 2365 (2012)CrossRefGoogle Scholar
  8. 8.
    C.F. Tseng, Microwave dielectric properties of a new ultra low loss pervoskite ceramic. J. Am. Ceram. Soc. 91, 4125 (2008)CrossRefGoogle Scholar
  9. 9.
    J.H. Sohn, Y. Inaguma, S.O. Yoon et al., Microwave dielectric characteristics of ilmenite-type titanates with high Q values. Jpn. J. Appl. Phys. 33, 5466 (1994)CrossRefGoogle Scholar
  10. 10.
    H. Su, S. Wu, Studies on the (Mg, Zn) TiO3–CaTiO3 microwave dielectric ceramics. Mater. Lett. 59, 2337 (2005)CrossRefGoogle Scholar
  11. 11.
    M.T. Sebastian, Dielectric Materials for Wireless Communication (Elsevier, Amsterdam, 2010)Google Scholar
  12. 12.
    C.F. Tseng, C.H. Hsu, A new compound with ultra low dielectric loss at microwave frequencies. J. Am. Ceram. Soc. 92, 1149 (2009)CrossRefGoogle Scholar
  13. 13.
    P.L. Wise, I.M. Reaney, W.E. Lee et al., Structure-microwave property relations in (SrxCa(1−x))n+1TinO3n+1. J. Eur. Ceram. Soc. 21, 1723 (2001)CrossRefGoogle Scholar
  14. 14.
    Cheng-Liang Huang, Chung-Long Pan, Shen-Jiunn Shium, Liquid phase sintering of MgTiO3–CaTiO3 microwave dielectric ceramics. Mater. Chem. Phys. 78, 111 (2003)CrossRefGoogle Scholar
  15. 15.
    H.T. Kim, S. Nahm, J.D. Byun, Y. Kim, Low-fired (Zn, Mg)TiO3 microwave dielectrics. J. Am. Ceram. Soc. 82, 3476 (1999)CrossRefGoogle Scholar
  16. 16.
    Hu Tao, Antti Uusimaki, Heli Jantunen, Seppo Leppavuori, Kajitrat Soponmanee, Somnuk Sirisoonthorn, Optimization of MgTiO3–CaTiO3 based LTCC tapes containing B2O3 for use in microwave applications. Ceram. Int. 31, 85 (2005)CrossRefGoogle Scholar
  17. 17.
    W. Xie, H. Zhou, H. Zhu et al., Effect of ZnO-WO3 additives on sintering behavior and microwave dielectric properties of 0.95MgTiO3–0.05CaTiO3 ceramics. Ceram. Int. 40, 6899 (2014)CrossRefGoogle Scholar
  18. 18.
    H.J. Lee, K.S. Hong, S.J. Kim et al., Dielectric properties of MNb2O6 compounds (where M=Ca, Mn Co, Ni, OR Zn). Mater. Res. Bull. 32, 847 (1997)CrossRefGoogle Scholar
  19. 19.
    M.U. Cohen, Precision lattice constants from X-ray powder photographs. Rev. Sci. Instrum. 6, 68 (1935)CrossRefGoogle Scholar
  20. 20.
    B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Trans. Microw. Theory Tech. 8, 402 (1960)CrossRefGoogle Scholar
  21. 21.
    W.E. Courtney, Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Trans. Microw. Theory Tech. 18, 476 (1970)CrossRefGoogle Scholar
  22. 22.
    C. Vineis, P.K. Davies, T. Negas, S. Bell, Microwave dielectric properties of hexagonal perovskites. Mater. Res. Bull. 31, 431 (1996)CrossRefGoogle Scholar
  23. 23.
    Y.B. Chen, Improved high Q value of MgTiO3–CaTiO3 microwave dielectric resonator using WO3-doped at lower sintering temperature for microwave applications. J. Alloy. Compd. 478, 657 (2009)CrossRefGoogle Scholar
  24. 24.
    C.L. Huang, M.H. Weng, Improved high q value of MgTiO3–CaTiO3 microwave dielectric ceramics at low sintering temperature. Mater. Res. Bull. 36, 2741 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Wentao Xie
    • 1
  • Hongqing Zhou
    • 1
  • Haikui Zhu
    • 1
  • Jianxin Zhao
    • 1
  • Luchao Ren
    • 1
  • Fang Huang
    • 1
  • Lei Qian
    • 1
  1. 1.College of Material Science and EngineeringNanjing Tech UniversityNanjingChina

Personalised recommendations