Characterization of the optical and mechanical properties of CdSe QDs/PMMA nanocomposite films



Optical and mechanical properties of different sizes and ratios of CdSe quantum dots (QDs)/PMMA nanocomposite films were investigated. Nanocomposite films of CdSe QDs (size = 3.75–5.23 nm)/PMMA (0.05 wt.%) were fabricated using casting technique. The optical properties of both colloidal CdSe QDs and CdSe QDs/PMMA nanocomposite films were recorded using UV–visible spectrophotometer. Red shifts in the absorption edges of CdSe/PMMA films have been seen compared with those of colloidal CdSe QDs. The mechanical properties including storage modulus, loss modulus, tan δ, and stiffness of the nanocomposite films as a function of temperature were recorded using a dynamic mechanical analyzer. An improvement in storage modulus, loss modulus, and stiffness have been observed for different sizes and ratios of CdSe QDs/PMMA as a function of temperature compared with those of pure PMMA film. The intensity of tan δ peak for pure PMMA film is larger than those of the nanocomposite films. The temperature at which the tan δ peak occurs is commonly known as the glass transition temperature (Tg). Tg of CdSe QDs/PMMA nanocomposite film shifts towards higher temperature side with respect to pure PMMA film from 91 to 110 °C as CdSe QDs size decreases from 3.75 to 5.23 nm.


PMMA High Resolution Transmission Electron Microscope Storage Modulus High Resolution Transmission Electron Microscope Dynamic Mechanical Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author wish to thank Taif University for the financial support (Grant Research No. 1/435/3524). I sincerely acknowledge helpful and useful discussion with Professor Hassan Talaat (Professor of Physics) at Ain Shams University.


  1. 1.
    A. Badawi, N. Al-Hosiny, S. Abdallah, S. Negm, H. Talaat, Sol. Energy 88, 137–143 (2013)CrossRefGoogle Scholar
  2. 2.
    P.K. Khanna, N. Singh, J. Lumin. 127, 474–482 (2007)CrossRefGoogle Scholar
  3. 3.
    O.E. Semonin, J.M. Luther, S. Choi, H.-Y. Chen, J. Gao, A.J. Nozik, M.C. Beard, Science 334, 1530–1533 (2011)CrossRefGoogle Scholar
  4. 4.
    V. Mathur, K. Sharma, Adv. Nanoparticles 2, 205–216 (2013)CrossRefGoogle Scholar
  5. 5.
    A. Badawi, N. Al-Hosiny, S. Abdallah, A. Merazga, H. Talaat, Mater. Sci. Semicond. Process. 26, 162–168 (2014)CrossRefGoogle Scholar
  6. 6.
    N. Al-Hosiny, S. Abdallah, A. Badawi, K. Easawi, H. Talaat, Mater. Sci. Semicond. Process. 26, 238–243 (2014)CrossRefGoogle Scholar
  7. 7.
    K. Surana, P.K. Singh, H.-W. Rhee, B. Bhattacharya, J. Ind. Eng. Chem. 20, 4188–4193 (2014)CrossRefGoogle Scholar
  8. 8.
    M. Kouhnavard, S. Ikeda, N.A. Ludin, N.B. Ahmad Khairudin, B.V. Ghaffari, M.A. Mat-Teridi, M.A. Ibrahim, S. Sepeai, K. Sopian, Renew. Sustain. Energy Rev. 37, 397–407 (2014)CrossRefGoogle Scholar
  9. 9.
    Z. El-Qahtani, A. Badawi, K. Easawi, N. Al-Hosiny, S. Abdallah, Mater. Sci. Semicond. Process. 20, 68–73 (2014)CrossRefGoogle Scholar
  10. 10.
    J. Wu, D. Shao, V.G. Dorogan, A.Z. Li, S. Li, E.A. DeCuir, M.O. Manasreh, Z.M. Wang, Y.I. Mazur, G.J. Salamo, Nano Lett. 10, 1512–1516 (2010)CrossRefGoogle Scholar
  11. 11.
    J. Wu, Z.M. Wang, V.G. Dorogan, S. Li, Y.I. Mazur, G.J. Salamo, Nanoscale 3, 1485–1488 (2011)CrossRefGoogle Scholar
  12. 12.
    N.M. Al-Hosiny, S. Abdallah, M.A.A. Moussa, A. Badawi, J. Polym. Res. 20, 1–8 (2013)CrossRefGoogle Scholar
  13. 13.
    N.G. Sahooa, S. Ranab, J.W. Chob, L. Li, S.H. Chana, Prog. Polym. Sci. 35, 837–867 (2010)CrossRefGoogle Scholar
  14. 14.
    J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Mark, K. Mackay, R.H. Friend, P.L. Burns, A.B. Holmes, Nature 347, 539 (1990)CrossRefGoogle Scholar
  15. 15.
    A. Rubio-Ríos, B. Aguilar-Castillo, S. Flores-Gallardo, C. Hernández-Escobar, E. Zaragoza-Contreras, Z. Zhao, M. Carpenter, J. Polym. Res. 19, 1–7 (2012)CrossRefGoogle Scholar
  16. 16.
    Z. Wang, X. Yang, J. Wei, M. Xu, L. Tong, R. Zhao, X. Liu, J. Polym. Res. 19, 1–8 (2012)CrossRefGoogle Scholar
  17. 17.
    J. Lee, V.C. Sundar, J.R. Heine, M.G. Bawendi, K.F. Jensen, Adv. Mater. 12, 1102–1105 (2000)CrossRefGoogle Scholar
  18. 18.
    C.G. Ma, Y.R. Wang, Y.J. Yu, Plastics. Rubber Composit. 39, 49–53 (2010)CrossRefGoogle Scholar
  19. 19.
    J. Al-Osaimi, N. Al-Hosiny, S. Abdallah, A. Badawi, Iran. Polym. J. 23, 437–443 (2014)CrossRefGoogle Scholar
  20. 20.
    C. Cheng, S. Wang, X. Cheng, Opt. Laser Technol. 44, 1298–1300 (2012)CrossRefGoogle Scholar
  21. 21.
    B.J. Ash, R.W. Siegel, L.S. Schadler, J. Polym. Sci. Part B Polym. Phys. 42, 4371–4383 (2004)CrossRefGoogle Scholar
  22. 22.
    W. Brostow, R. Chiu, I.M. Kalogeras, A. Vassilikou-Dova, Mater. Lett. 62, 3152–3155 (2008)CrossRefGoogle Scholar
  23. 23.
    R. Faria, J.C. Duncan, R.G. Brereton, Polym. Test. 26, 402–412 (2007)CrossRefGoogle Scholar
  24. 24.
    S.I.J. Wilberforce, S.M. Best, R.E. Cameron, J. Mater. Sci. Mater. Med. 21, 3085–3093 (2010)CrossRefGoogle Scholar
  25. 25.
    J. Rieger, Polym. Test. 20, 199–204 (2001)CrossRefGoogle Scholar
  26. 26.
    P.S. Khiew, N.M. Huang, S. Radiman, S. Ahmad, Mater. Lett. 58, 762–767 (2004)CrossRefGoogle Scholar
  27. 27.
    A. Montazeri, K. Pourshamsian, M. Riazian, Mater. Des. 36, 408–414 (2012)CrossRefGoogle Scholar
  28. 28.
    V. Mathur, M. Dixit, K.S. Rathore, N.S. Saxena, K.B. Sharma, Front. Chem. Sci. Eng. 5, 258–263 (2011)CrossRefGoogle Scholar
  29. 29.
    Y.-L. Huang, C.-C.M. Ma, S.-M. Yuen, C.-Y. Chuang, H.-C. Kuan, C.-L. Chiang, S.-Y. Wu, Mater. Chem. Phys. 129, 1214–1220 (2011)CrossRefGoogle Scholar
  30. 30.
    H. Essabir, A. Elkhaoulani, K. Benmoussa, R. Bouhfid, F.Z. Arrakhiz, A. Qaiss, Mater. Des. 51, 780–788 (2013)CrossRefGoogle Scholar
  31. 31.
    S.D. Sartale, C.D. Lokhande, Mater. Chem. Phys. 72, 101–104 (2001)CrossRefGoogle Scholar
  32. 32.
    W. Brostow, H.E.H. Lobland, M. Narkis, Polym. Bull. 67, 1697–1707 (2011)CrossRefGoogle Scholar
  33. 33.
    M. Dixit, S. Gupta, V. Mathur, K.S. Rathore, K. Sharma, N.S. Saxena, Chalcogenide Lett. 6, 131–136 (2009)Google Scholar
  34. 34.
    K. Sewda, S.N. Maiti, Polym. Bull. 70, 2657–2674 (2013)CrossRefGoogle Scholar
  35. 35.
    A. Badawi, N. Al-Hosiny, S. Abdallah, H. Talaat, Mater. Sci. Pol. 31, 6–13 (2013)CrossRefGoogle Scholar
  36. 36.
    T.P. Mthethwa, M.J. Moloto, A.D. Vries, K.P. Matabola, Mater. Res. Bull. 46, 569–575 (2011)CrossRefGoogle Scholar
  37. 37.
    H.-J. Kim, D.-J. Kim, S.S. Rao, A.D. Savariraj, K. Soo-Kyoung, M.-K. Son, C.V.V.M. Gopi, K. Prabakar, Electrochim. Acta 127, 427–432 (2014)CrossRefGoogle Scholar
  38. 38.
    C.V.V.M. Gopi, S. Srinivasa Rao, S.K. Kim, D. Punnoose, H.J. Kim, J. Power Sources 275, 547–556 (2015)CrossRefGoogle Scholar
  39. 39.
    E. Logakis, C. Pandis, P. Pissis, J. Pionteck, P. Pötschke, Composit. Sci. Technol. 71, 854–862 (2011)CrossRefGoogle Scholar
  40. 40.
    A.L. Martínez-Hernández, C. Velasco-Santos, V.M. Castaño, Curr. Nanosci. 6, 12–39 (2010)CrossRefGoogle Scholar
  41. 41.
    C. Velasco-Santos, A.L. Mart´ınez-Hern´andez, F. Fisher, R. Ruoff, V.M. Casta˜no, J. Phys. D Appl. Phys. 36, 1423–1428 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceTaif UniversityTaifSaudi Arabia

Personalised recommendations