Describing oxygen self-diffusion in PuO2 by connecting point defect parameters with bulk properties

  • A. Chroneos
  • M. E. Fitzpatrick
  • L. H. Tsoukalas


The description of oxygen self-diffusion over a range of temperatures and pressures is important in PuO2 for nuclear fuel applications. Although there are limited experimental studies describing oxygen self-diffusion in PuO2, recent molecular dynamics studies extend the temperature range significantly. In the present study elastic and expansivity data is used in the framework of a thermodynamic model (known as the cBΩ model) to derive the oxygen self-diffusion coefficient in PuO2 in the temperature range 1800–3000 K. In the cBΩ model the defect Gibbs energy is proportional to the isothermal bulk modulus (B) and the mean volume per atom (Ω). The derived results are in good agreement with the most recent experimental and molecular dynamics data. Importantly, the present study extends the applicability of the model to nuclear fuel materials for the first time, where point defect parameters and behaviour are difficult to determine, particularly at the temperatures considered here.


ThO2 PuO2 Isothermal Bulk Modulus Superionic Transition Mixed Oxide Fuel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Michael Cooper (Imperial College London) for continued informed discussions. This research was supported in part by the RCUK Energy Programme, and we are grateful to EPSRC for funding via the PROMINENT Nuclear Fission consortium grant. MEF is grateful for funding from the Lloyd’s Register Foundation, a charitable foundation helping to protect life and property by supporting engineering-related education, public engagement and the application of research.


  1. 1.
    W.E. Lee, M. Gilbert, S.T. Murphy, R.W. Grimes, J. Am. Ceram. Soc. 96, 2005–2030 (2013)CrossRefGoogle Scholar
  2. 2.
    S.C. Middleburgh, G.R. Lumpkin, R.W. Grimes, Solid State Ionics 253, 119–122 (2013)CrossRefGoogle Scholar
  3. 3.
    M.W.D. Cooper, S.C. Middleburgh, R.W. Grimes, Solid State Ionics 266, 68–72 (2014)CrossRefGoogle Scholar
  4. 4.
    M. Lung, O. Gremm, Nucl. Eng. Des. 180, 133 (1998)CrossRefGoogle Scholar
  5. 5.
    C. Lombardi, L. Luzzi, E. Padovani, F. Vettraino, Prog. Nucl. Energy 50, 944 (2008)CrossRefGoogle Scholar
  6. 6.
    S.T. Murphy, M.W.D. Cooper, R.W. Grimes, Solid State Ionics 267, 80–87 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Kazimi, Am. Sci. 91, 408 (2003)CrossRefGoogle Scholar
  8. 8.
    R. Hargraves, R.W. Moir, Am. Sci. 98, 304 (2010)CrossRefGoogle Scholar
  9. 9.
    R.W. Grimes, W.J. Nuttal, Science 329, 799 (2010)CrossRefGoogle Scholar
  10. 10.
    J. Philibert, Defect Diffus. Forum 249, 61 (2006)Google Scholar
  11. 11.
    P. Varotsos, K. Alexopoulos, Phys. Rev. B 15, 411 (1977)Google Scholar
  12. 12.
    P. Varotsos, K. Alexopoulos, Phys. Rev. B 15, 2348 (1977)CrossRefGoogle Scholar
  13. 13.
    P. Varotsos, K. Alexopoulos, Phys. Rev. B 22, 3130 (1980)CrossRefGoogle Scholar
  14. 14.
    P. Varotsos, K. Alexopoulos, Thermodynamics of Point Defects and Their Relation with the Bulk Properties (Elsevier, North-Holland, 1986)Google Scholar
  15. 15.
    P. Varotsos, J. Appl. Phys. 101, 123503 (2007)CrossRefGoogle Scholar
  16. 16.
    P. Varotsos, Solid State Ionics 179, 438–441 (2008)CrossRefGoogle Scholar
  17. 17.
    A. Chroneos, R.V. Vovk, J. Mater. Sci.: Mater. Electron. (2015). doi: 10.1007/s10854-014-2655-y Google Scholar
  18. 18.
    A. Chroneos, Y. Panayiotatos, R.V. Vovk, J. Mater. Sci.: Mater. Electron. (2015). doi: 10.1007/s10854-015-2744-6 Google Scholar
  19. 19.
    E.S. Skordas, Solid State Ionics 261, 26 (2014)CrossRefGoogle Scholar
  20. 20.
    C.R.A. Catlow, Proc. R. Soc. Lond. A 353, 533–561 (1977)CrossRefGoogle Scholar
  21. 21.
    S.C. Lumley, R.W. Grimes, S.T. Murphy, P.A. Burr, A. Chroneos, P.R. Chard-Tuckey, M.R. Wenman, Acta Materialia 79, 351 (2014)CrossRefGoogle Scholar
  22. 22.
    G. Busker, A. Chroneos, R.W. Grimes, I.W. Chen, J. Am. Ceram. Soc. 82, 1553–1559 (1999)CrossRefGoogle Scholar
  23. 23.
    H. Wang, A. Chroneos, C. Jiang, U. Schwingenschlogl, Phys. Chem. Chem. Phys. 15, 7599 (2013)CrossRefGoogle Scholar
  24. 24.
    A.I. Potashnikov, A.S. Boyarchenkov, K.A. Nekrasov, A.Y. Kupryazhkin, J. Nucl. Mater. 433, 215–226 (2013)CrossRefGoogle Scholar
  25. 25.
    A. Chroneos, M.J.D. Rushton, C. Jiang, L.H. Tsoukalas, J. Nucl. Mater. 441, 29 (2013)CrossRefGoogle Scholar
  26. 26.
    M.W.D. Cooper, M.J.D. Rushton, R.W. Grimes, J. Phys. Condens. Matter 26, 105401 (2014)CrossRefGoogle Scholar
  27. 27.
    M.W.D. Cooper, S.T. Murphy, P.C.M. Fossati, M.J.D. Rushton, R.W. Grimes, Proc. R. Soc. Lond. A 470, 20140427 (2014)CrossRefGoogle Scholar
  28. 28.
    M.J.D. Rushton, A. Chroneos, Sci. Rep. 4, 6068 (2014)CrossRefGoogle Scholar
  29. 29.
    M.W.D. Cooper, S.T. Murphy, M.J.D. Rushton, R.W. Grimes, J. Nucl. Mater. (in press)Google Scholar
  30. 30.
    B.H. Zhang, X.P. Wu, J.S. Xu, R.L. Zhou, J. Appl. Phys. 108, 053505 (2010)CrossRefGoogle Scholar
  31. 31.
    B.H. Zhang, X.P. Wu, R.L. Zhou, Solid State Ionics 186, 20 (2011)CrossRefGoogle Scholar
  32. 32.
    J.P. Hiernaut, G.J. Hyland, C. Ronchi, Int. J. Thermophys. 14, 259 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • A. Chroneos
    • 1
  • M. E. Fitzpatrick
    • 1
  • L. H. Tsoukalas
    • 2
  1. 1.Faculty of Engineering and ComputingCoventry UniversityCoventryUK
  2. 2.Department of Nuclear EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations