Advertisement

Dy3+ and Eu3+ complexes co-doped flexible composite nanofibers to achieve tunable fluorescent color

  • Xuejiao Zhou
  • Qianli Ma
  • Xiangting Dong
  • Jinxian Wang
  • Wensheng Yu
  • Guixia Liu
Article

Abstract

Color-tunable flexible composite nanofibers containing Dy(BA)3phen and Eu(BA)3phen complexes have been successfully fabricated via a facile electrospinning process. Scanning electron microscopy, energy dispersive spectrometry and fluorescence spectroscopy were used to characterize the samples. The diameter of the composite nanofibers is 420.83 ± 6.55 nm. Tunable color from greenish blue to white to orange can be realized in a single flexible composite nanofiber by varying the mass ratio of Dy(BA)3phen–Eu(BA)3phen, and it is the first time to obtain white-light-emitting flexible nanofibers using rare earth complexes as luminescent centers. In particular, the composite nanofibers can respectively emit cool and warm white light with certain doping contents of Dy(BA)3phen and Eu(BA)3phen. The novel color-tunable composite nanofibers have potential applications in the fields of fluorescent lamps, field emission displays and color displays.

Keywords

Rare Earth Phen Benzoic Acid Mass Percentage Fluorescence Lifetime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC 50972020, 51072026), Specialized Research Fund for the Doctoral Program of Higher Education (20102216110002, 20112216120003), the Science and Technology Development Planning Project of Jilin Province (Grant Nos. 20130101001JC, 20070402, 20060504), the Research Project of Science and Technology of Department of Education of Jilin Province “11th 5-year plan” (Grant No. 2010JYT01), Key Research Project of Science and Technology of Ministry of Education of China (Grant No. 207026).

References

  1. 1.
    Z.P. Ci, Q.S. Sun, S.C. Qin, M.X. Sun, X.J. Jiang, X.D. Zhang, Y.H. Wang, Phys. Chem. Chem. Phys. 16, 11597–11602 (2014)CrossRefGoogle Scholar
  2. 2.
    M.M. Jiao, N. Guo, W. Lü, Y.C. Jia, W.Z. Lv, Q. Zhao, B.Q. Shao, H.P. You, Inorg. Chem. 52, 10340–10346 (2013)CrossRefGoogle Scholar
  3. 3.
    S. Das, C.Y. Yang, H.C. Lina, C.H. Lu, RSC Adv. 4, 64956–64966 (2014)CrossRefGoogle Scholar
  4. 4.
    H.X. Guan, G.X. Liu, J.X. Wang, X.T. Dong, W.S. Yu, Dalton Trans. 43, 10801–10808 (2014)CrossRefGoogle Scholar
  5. 5.
    Y.J. Yun, H.J. Lim, J.S. Park, M. Wu, H.K. Junga, S. Choi, Dalton Trans. 44, 338–344 (2015)CrossRefGoogle Scholar
  6. 6.
    Y. Liu, G.X. Liu, J.X. Wang, X.T. Dong, W.S. Yu, Inorg. Chem. 53, 11457–11466 (2014)CrossRefGoogle Scholar
  7. 7.
    M.M. Shang, G.G. Li, X.J. Kang, D.M. Yang, D.L. Geng, J. Lin, ACS Appl. Mat. Interfaces 3, 2738–2746 (2011)CrossRefGoogle Scholar
  8. 8.
    E. Pavitra, G.S.R. Raju, Y.H. Ko, J.S. Yu, Phys. Chem. Chem. Phys. 14, 11296–11307 (2012)CrossRefGoogle Scholar
  9. 9.
    L.H. Zhang, H.P. You, M. Yang, J. Phys. Chem. Solids 73, 368–373 (2012)CrossRefGoogle Scholar
  10. 10.
    Q.L. Ma, W.S. Yu, X.T. Dong, J.X. Wang, G.X. Liu, J. Xu, J. Nanopart. Res. 14, 1–7 (2012)Google Scholar
  11. 11.
    N. Lv, Q.L. Ma, X.T. Dong, J.X. Wang, W.S. Yu, G.X. Liu, ChemPlusChem 79, 690–697 (2014)CrossRefGoogle Scholar
  12. 12.
    K. Lun, Q.L. Ma, X.T. Dong, W.S. Yu, J.X. Wang, G.X. Liu, J. Mater. Sci. Mater. Electron. 25, 5395–5402 (2014)CrossRefGoogle Scholar
  13. 13.
    W.Q. Fan, J. Feng, S.Y. Song, Y.Q. Lei, G.L. Zheng, H.J. Zhang, Chem. Eur. J. 16, 1903–1910 (2010)CrossRefGoogle Scholar
  14. 14.
    L.N. Sun, H.J. Zhang, L.S. Fu, F.Y. Liu, Q.G. Meng, C.Y. Peng, J.B. Yu, Adv. Funct. Mater. 15, 1041–1048 (2005)CrossRefGoogle Scholar
  15. 15.
    Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, ChemPlusChem 79, 290–297 (2014)CrossRefGoogle Scholar
  16. 16.
    Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, J. Xu, J. Mater. Chem. 22, 14438–14442 (2012)CrossRefGoogle Scholar
  17. 17.
    Q.L. Ma, W.S. Yu, X.T. Dong, J.X. Wang, G.X. Liu, Nanoscale 6, 2945–2952 (2014)CrossRefGoogle Scholar
  18. 18.
    X.H. Qin, S.Y. Wang, J. Appl. Polym. Sci. 102, 1285–1290 (2006)CrossRefGoogle Scholar
  19. 19.
    X.Y. Wang, C. Drew, S.H. Lee, K.J. Senecal, J. Kumar, L.A. Samuelson, Nano Lett. 2, 1273–1275 (2002)CrossRefGoogle Scholar
  20. 20.
    S.C. Baker, N. Atkin, P.A. Gunning, N. Granville, K. Wilson, D. Wilson, J. Southgate, Biomaterials 27, 3136–3146 (2006)CrossRefGoogle Scholar
  21. 21.
    S.L. Chen, H.Q. Hou, F. Harnisch, S.A. Patil, A.A. Carmona-Martinez, S. Agarwal, Y.Y. Zhang, S. Sinha-Ray, A.L. Yarin, A. Greiner, U. Schroder, Energy Environ. Sci. 4, 1417–1421 (2011)CrossRefGoogle Scholar
  22. 22.
    Z. Hou, X. Li, C. Li, Y. Dai, P. Ma, X. Zhang, X. Kang, Z. Cheng, J. Lin, Langmuir 29, 9473–9482 (2013)CrossRefGoogle Scholar
  23. 23.
    M.Y. Zhang, C.L. Shao, J.B. Mu, X.M. Huang, Z.Y. Zhang, Z.C. Guo, P. Zhang, Y.C. Liu, J. Mater. Chem. 22, 577–584 (2012)CrossRefGoogle Scholar
  24. 24.
    Z.Y. Zhang, C.L. Shao, X.H. Li, Y.Y. Sun, M.Y. Zhang, J.B. Mu, P. Zhang, Z.C. Guo, Y.H. Liu, Nanoscale 5, 606–618 (2013)CrossRefGoogle Scholar
  25. 25.
    Z.Y. Li, H. Huang, C. Wang, Macromol. Rapid Commun. 27, 152–155 (2006)CrossRefGoogle Scholar
  26. 26.
    Y. Bao, Q.A. Luu, Y. Zhao, H. Fong, P.S. May, C.Y. Jiang, Nanoscale 4, 7369–7375 (2012)CrossRefGoogle Scholar
  27. 27.
    B. Dong, H.W. Song, H.Q. Yu, H. Zhang, R.F. Qin, X. Bai, G.H. Pan, S.Z. Lu, F. Wang, L.B. Fan, Q.L. Dai, J. Phys. Chem. C 112, 1435–1440 (2008)CrossRefGoogle Scholar
  28. 28.
    X.M. Sui, C.L. Shao, Y.C. Liu, Appl. Phys. Lett. 87, 113−115 (2005)CrossRefGoogle Scholar
  29. 29.
    C.C. Kuo, C.H. Lin, W.C. Chen, Macromolecules 40, 6959–6966 (2007)CrossRefGoogle Scholar
  30. 30.
    S.B. Meshkova, J. Fluoresc. 10, 333–337 (2000)CrossRefGoogle Scholar
  31. 31.
    X.H. Liu, W.D. Xiang, F.M. Chen, Z.F. Hu, W. Zhang, Mater. Res. Bull. 48, 281–285 (2013)CrossRefGoogle Scholar
  32. 32.
    S.F. Li, G.Y. Zhong, W.H. Zhu, F.Y. Li, J.P. Pan, W. Huang, H. Tian, J. Mater. Chem. 15, 3221–3228 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin ProvinceChangchun University of Science and TechnologyChangchunChina

Personalised recommendations