Humidity sensing properties of CeO2–NiO nanocomposite materials

  • Dongmei Li
  • Jingjing Zhang
  • Wei wei
  • Jingran Zhou
  • Shanpeng Wen
  • Shengping Ruan


CeO2–NiO composites were prepared by a simple grind method followed by a heat-treatment process and characterized by X-ray diffraction, transmission electron microscope and nitrogen adsorption–desorption test. Humidity sensing properties of CeO2–NiO composites with different mass ratios were studied. The optimal result was obtained for the sample with CeO2–NiO mass ratio of 0.5. The impedance of the sensor changes more than five orders of magnitude within the humidity range from 11 to 95 % relative humidity (RH) at 100 Hz. The response and recovery time are about 3 and 19 s respectively, and the maximum hysteresis is <2 % RH. The results indicate the potential applications of CeO2–NiO composite (CeO2–NiO mass ratio of 0.5) for fabricating high performance humidity sensors.


CeO2 Humidity Sensor Saturated Salt Solution Relative Humidity Range Mesoporous CeO2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to National Natural Science Foundation of China (Grant Nos. 61404058, 51303061), the National High Technology Research and Development Program of China (Grant No. 2013AA030902), Project of Science and Technology Plan of Changchun City (Grant Nos. 14KG020, 14KG019), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (No. IOSKL2013KF10) for the supports to the work.


  1. 1.
    P.J. Schubert, J.H. Nevin, A polyimide-based capacitive humidity sensor. IEEE Trans. Electron Devices 32, 1220–1223 (1985)CrossRefGoogle Scholar
  2. 2.
    Q. Kuang, C. Lao, Z.L. Wang, Z. Xie, L. Zheng, High-sensitivity humidity sensorbased on a single SnO2 nanowire. J. Am. Chem. Soc. 129, 6070–6071 (2007)CrossRefGoogle Scholar
  3. 3.
    H. Mishra, V. Misra, M.S. Mehata, T.C. Pant, H.B. Tripathi, Fluorescence studies of salicylic acid doped poly (vinyl alcohol) film as a water/humidity sensor. J. Phys. Chem. A 108, 2346–2352 (2004)CrossRefGoogle Scholar
  4. 4.
    P.G. Su, Y.L. Sun, C.C. Lin, Humidity sensor based on PMMA simultaneously doped with two different salts. Sens. Actuators B 113, 883–886 (2006)CrossRefGoogle Scholar
  5. 5.
    Y. Li, B.Y. Ying, L.J. Hong, M.J. Yang, Water-soluble polyaniline and its composite with poly(vinyl alcohol) for humidity sensing. Synth. Met. 160, 455–461 (2010)CrossRefGoogle Scholar
  6. 6.
    R. Nohria, R.K. Khillan, Y. Su, R. Dikshit, Y. Lvov, K. Varahramyan, Humidity sensor based on ultrathin polyaniline film deposited using layer-by-layer nano-assembly. Sens. Actuators B 114, 218–222 (2006)CrossRefGoogle Scholar
  7. 7.
    Y. Li, P. Li, M.J. Yang, S. Lei, Y.Q. Chen, X.S. Guo, A surface acoustic wave humidity sensor based on electrosprayed silicon-containing polyelectrolyte. Sens. Actuators B 145, 516–520 (2010)CrossRefGoogle Scholar
  8. 8.
    N.B. Cho, T.H. Lim, Y.M. Jeon, M.S. Gong, Humidity sensors fabricated with photo-curable electrolyte inks using an ink-jet printing technique and their properties. Sens. Actuators B 130, 594–598 (2008)CrossRefGoogle Scholar
  9. 9.
    M.S. Gong, J.U. Kim, J.G. Kim, Preparation of water-durable humidity sensor by attachment of polyelectrolyte membrane to electrode substrate by photochemical crosslinking reaction. Sens. Actuators B 147, 539–547 (2010)CrossRefGoogle Scholar
  10. 10.
    N.A. Luechinger, S. Loher, E.K. Athanassiou, R.N. Grass, W.J. Stark, Highly sensitive optical detection of humidity on polymer/metal nanoparticle hybrid films. Langmuir 23, 3473–3477 (2007)CrossRefGoogle Scholar
  11. 11.
    R.P. Tandon, M.R. Tripathy, A.K. Arora, S. Hotchandani, Gas and humidity response of iron oxide—polypyrrole nanocomposites. Sens. Actuators B 114, 768–773 (2006)CrossRefGoogle Scholar
  12. 12.
    N. Parvatikar, S. Jain, S. Khasim, M. Revansiddappa, S.V. Bhoraskar, M.V.N. Ambika Prasad, Electrical and humidity sensing properties of polyaniline/WO3 composites. Sens. Actuators B 114, 599–603 (2006)CrossRefGoogle Scholar
  13. 13.
    K.P. Yoo, L.T. Lim, N.K. Min, M.J. Lee, C.J. Lee, C.W. Park, Novel resistive-type humidity sensor based on multiwall carbon nanotube/polyimide composite films. Sens. Actuators B 145, 120–125 (2010)CrossRefGoogle Scholar
  14. 14.
    J.H. Kim, J.H. Moon, S.Y. Lee, J. Park, Biologically inspired humidity sensor based on three-dimensional photonic crystals. Appl. Phys. Lett. 97, 103701 (2010)CrossRefGoogle Scholar
  15. 15.
    M.M. Hawkeye, M.J. Brett, Optimized colorimetric photonic-crystal humidity sensor fabricated using glancing angle deposition. Adv. Funct. Mater. 21, 3652–3658 (2011)CrossRefGoogle Scholar
  16. 16.
    R.Y. Xuan, Q.S. Wu, Y.D. Yin, J.P. Ge, Magnetically assembled photonic crystal film for humidity sensing. J. Mater. Chem. 21, 3672–3676 (2011)CrossRefGoogle Scholar
  17. 17.
    X.L. Hu, J.M. Gong, L.Z. Zhang, J.C. Yu, Continuous size tuning of monodisperse ZnO colloidal nanocrystal clusters by a microwave-polyol process and their application for humidity sensing. Adv. Mater. 20, 4845–4850 (2008)CrossRefGoogle Scholar
  18. 18.
    A.I. Buvailo, Y.J. Xing, J. Hines, N. Dollahon, E. Borguet, TiO2/LiCl-based nanostructured thin film for humidity sensor applications. ACS Appl. Mater. Interfaces 3, 528–533 (2011)CrossRefGoogle Scholar
  19. 19.
    Z.Y. Li, H.N. Zhang, W. Zheng, W. Wang, H.M. Huang, C. Wang, A.G. MacDiarmid, Y. Wei, Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers. J. Am. Chem. Soc. 130, 5036–5037 (2008)CrossRefGoogle Scholar
  20. 20.
    J. Shaha, M. Aroraa, L.P. Purohitb, R.K. Kotnalaa, Significant increase in humidity sensing characteristics of praseodymium doped magnesium ferrite. Sens. Actuators A 167, 332–337 (2011)CrossRefGoogle Scholar
  21. 21.
    M. Bayhan, N. Kavasoglu, A study on the humidity sensing properties of ZnCr2O4–K2CrO4 ionic conductive ceramic sensor. Sens. Actuators B 117, 261–265 (2006)CrossRefGoogle Scholar
  22. 22.
    J.J. Vijaya, L.J. Kennedy, G. Sekaran, K.S. Nagaraja, Synthesis, characterization and humidity sensing properties of Sr(II)-added BaAl2O4 composites. Sens. Actuators B 124, 542–548 (2007)CrossRefGoogle Scholar
  23. 23.
    W.C. Geng, R. Wang, X.T. Li, Y.C. Zou, T. Zhang, J.C. Tu, Humidity sensitive property of Li-doped mesoporous silica SBA-15. Sens. Actuators B 127, 323–329 (2007)CrossRefGoogle Scholar
  24. 24.
    P.G. Su, W.C. Li, J.Y. Seng, C.J. Ho, Fully transparent and flexible humidity sensors fabricated by layer-by-layer self-assembly of thin film of poly (2-acrylamido-2-methylpropane sulfonate) and its salt complex. Sens. Actuators B 153, 29–36 (2011)CrossRefGoogle Scholar
  25. 25.
    Q. Yuan, N. Li, W. Geng, Y. Chi, T. Jinchun, Humidity-sensing properties of mesorporous iron oxide/silica composite prepared via hydrothermal process. Sens. Actuators B 160, 334–340 (2011)CrossRefGoogle Scholar
  26. 26.
    Y. Zhu, J. Chen, H. Li, Y. Zhu, Synthesis of mesorporous SnO2–SiO2 composites and their application as quartz crystal microbalance humidity sensor. Sens. Actuators B 193, 320–325 (2014)CrossRefGoogle Scholar
  27. 27.
    L. Greenspan, Humidity fixed points of binary saturated aqueous solutions. J. Res. Natl. Bur. Stand. A Phys. Chem. 81, 89–96 (1977)CrossRefGoogle Scholar
  28. 28.
    S. Agarwal, G.L. Sharma, Humidity sensing properties of (Ba, Sr) TiO3 thin films grown by hydrothermal–electrochemical method. Sens. Actuators, B 85, 211–225 (2002)CrossRefGoogle Scholar
  29. 29.
    J.H. Anderson, G.A. Parks, The electrical conductivity of silica gel in the presence of adsorbed water. J. Phys. Chem. 72(10), 3666–3668 (1968)CrossRefGoogle Scholar
  30. 30.
    S. Jagtap, K.P. Priolkar, Evaluation of ZnO nanoparticles and study of ZnO–TiO2 copositees for lead free humidity sensors. Sens. Actuators B 183, 411–418 (2013)CrossRefGoogle Scholar
  31. 31.
    N. Agmon, The Grotthuss mechanism. Chem. Phys. Lett 244(6), 456–462 (1995)CrossRefGoogle Scholar
  32. 32.
    S.A. Makhlouf, K.M.S. Khalil, Humidity sensing properties of NiO/Al2O3 nanocomposite materials. Solid State Ion. 164, 97–106 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.State Key Laboratory on Integrated OptoelectronicsChangchunPeople’s Republic of China
  2. 2.College of Electronic Science and EngineeringChangchunPeople’s Republic of China

Personalised recommendations