Advertisement

Surface modification of sol–gel synthesized TiO2 photo-catalysts for the production of core/shell structured TiO2–SiO2 nano-composites with reduced photo-catalytic activity

  • Vahide Tizjang
  • Mehdi Montazeri-Pour
  • Masoud Rajabi
  • Maryam Kari
  • Shahab Moghadas
Article

Abstract

TiO2 nanoparticles have been prepared by a facile and reproducible wet chemical approach based on the sol–gel method followed by calcination at various temperatures and times. X-ray diffraction and differential thermal analysis/thermo-gravimetric analysis techniques were used to evaluate phase compositions and transformations during calcination treatment. Then, the silica coating of synthesized TiO2 nanoparticles has been performed by means of a route based on the Stöber process to fabricate core/shell structured TiO2–SiO2 nano-composites with the aim to decline the high photo-catalytic activity of pure TiO2 under UV light irradiation, while simultaneously maintaining its UV-barrier ability. The photo-catalytic property was evidenced by the degradation of an aqueous solution of methylene blue in UV range. The elemental composition of core/shell structured TiO2–SiO2 nano-composites was verified by using energy dispersive X-ray (EDX) analysis, and in order to understand the atomic distributions, EDX elemental mapping has been demonstrated for optimum nano-composite sample. The chemical states of the atoms on the surface of synthesized TiO2 and in the coating layer of optimized nano-composite were examined by X-ray photoelectron spectroscopy analysis, and the presence of Si–O–Si and Ti–O–Si bands on the surface of nano-composite particles was further proved by it. In addition to the confirmation of coating of titania surface by silica layer with mean thickness of 4 nm via TEM image examination, the zeta-potential analyses also indicated that the silica sheath shifted the isoelectric point of synthesized titania toward that of a typical pure colloidal silica. Furthermore, the resultant optimum nano-composites have been characterized by BET, FTIR, FESEM and UV–Vis spectroscopy.

Keywords

TiO2 Methylene Blue TiO2 Nanoparticles TiO2 Particle Pure TiO2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The financial support of this work by the Iran National Science Foundation (INSF), Grant No. 90004426, is gratefully acknowledged.

References

  1. 1.
    M. Dameris, Depletion of the ozone layer in the 21st century. Angew. Chem. Int. Ed. 49, 489–491 (2010)CrossRefGoogle Scholar
  2. 2.
    E. Vasili, Xh Doci, E. Petrela, I. Savo, E. Cano, B. Bezati, Environmental effects of ozone layer depletion on skin cancer. J. Environ. Prot. Ecol. 14, 731–743 (2013)Google Scholar
  3. 3.
    C. Decker, K. Zahouily, Photo-degradation and photo-oxidation of thermoset and UV-cured acrylate polymers. Polym. Degrad. Stab. 64, 293–304 (1999)CrossRefGoogle Scholar
  4. 4.
    A.L. Andradya, S.H. Hamidb, X. Huc, A. Torikai, Effects of increased solar ultraviolet radiation on materials. J. Photochem. Photobiol. B Biol. 46, 96–103 (1998)CrossRefGoogle Scholar
  5. 5.
    P. Singh, A. Nanda, Nanotechnology in cosmetics: a boon or bane? Toxiol. Environ. Chem. 94, 1467–1479 (2012)CrossRefGoogle Scholar
  6. 6.
    F.P. Gasparro, M. Mitchnick, J.F. Nash, A review of sunscreen safety and efficacy. Photochem. Photobiol. 68, 243–256 (1998)CrossRefGoogle Scholar
  7. 7.
    J. Glówczyk-Zubek, Cosmetic application of micro-fine titanium dioxide. J. Appl. Cosmetol. 22, 143–153 (2004)Google Scholar
  8. 8.
    H. Yang, S. Zhu, N. Pan, Studying the mechanisms of titanium dioxide as ultraviolet-blocking additive for films and fabrics by an improved scheme. J. Appl. Polym. Sci. 92, 3201–3210 (2004)CrossRefGoogle Scholar
  9. 9.
    S. Xiao, L. Liu, J. Lian, Solvo-thermal synthesis of nano-crystalline ZnO with excellent photo-catalytic performance. J. Mater. Sci. Mater. Electron. 25, 5518–5523 (2014)CrossRefGoogle Scholar
  10. 10.
    N.M. Zholobak, V.K. Ivanov, A.B. Shcherbakov, A.S. Shaporev, O.S. Polezhaeva, A.Y. Baranchikov, N.Y. Spivak, Y.D. Tretyakov, UV-shielding property, photo-catalytic activity and photo-cytotoxicity of ceria colloid solutions. J. Photochem. Photobiol. B 102, 32–38 (2011)CrossRefGoogle Scholar
  11. 11.
    X. Chen, S.S. Mao, Titanium dioxide nano-materials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007)CrossRefGoogle Scholar
  12. 12.
    A. Mills, S. Le Hunte, An overview of semiconductor photo-catalysis. J. Photochem. Photobiol. A 108, 1–35 (1997)CrossRefGoogle Scholar
  13. 13.
    N. Serpone, A. Salinaro, A. Emeline, Deleterious effects of sunscreen titanium dioxide nanoparticles on DNA: efforts to limit DNA damage by particle surface modification. Proc. SPIE Int. Soc. Opt. Eng. 4258, 86–98 (2001)Google Scholar
  14. 14.
    L. Cao, Z. Gao, S.L. Suib, T.N. Obee, S.O. Hay, J.D. Freihaut, Photo-catalytic oxidation of toluene on nano-scale TiO2 catalysts: studies of deactivation and regeneration. J. Catal. 196, 253–261 (2000)CrossRefGoogle Scholar
  15. 15.
    Y.-L. Lin, T.-J. Wang, Y. Jin, Surface characteristics of hydrous silica-coated TiO2 particles. Powder Technol. 123, 194–198 (2002)CrossRefGoogle Scholar
  16. 16.
    X. Feng, S. Zhang, X. Lou, Controlling silica coating thickness on TiO2 nano-particles for effective photodynamic therapy. Colloids Surf. B Biointerfaces 107, 220–226 (2013)CrossRefGoogle Scholar
  17. 17.
    R.G. Chaudhuri, S. Paria, Core/shell nano-particles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112, 2373–2433 (2012)CrossRefGoogle Scholar
  18. 18.
    E. Ukaji, T. Furusawa, M. Sato, N. Suzuki, The effect of surface modification with silane coupling agent on suppressing the photo-catalytic activity of fine TiO2 particles as inorganic UV filter. Appl. Surf. Sci. 254, 563–569 (2007)CrossRefGoogle Scholar
  19. 19.
    O.K. Park, Y.S. Kang, Preparation and characterization of silica coated TiO2 nano-particle. Colloids Surf. A Physicochem. Eng. Asp. 257–258, 261–265 (2005)CrossRefGoogle Scholar
  20. 20.
    I.A. Siddiquey, T. Furusawa, M. Sato, K. Honda, N. Suzuki, Control of the photo-catalytic activity of TiO2 nanoparticles by silica coating with polydiethoxysiloxane. Dye Pigment 76, 754–759 (2008)CrossRefGoogle Scholar
  21. 21.
    J.P. Jolivet, Metal Oxide Chemistry and Synthesis (Wiley, Chichester, 2003)Google Scholar
  22. 22.
    D.P. Macwan, P.N. Dave, S. Chaturvedi, A review on nano-TiO2 sol–gel type syntheses and its applications. J. Mater. Sci. 46, 3669–3686 (2011)CrossRefGoogle Scholar
  23. 23.
    D. Dastan, P.U. Londhe, N.B. Chaure, Characterization of TiO2 nanoparticles prepared using different surfactants by sol–gel method. J. Mater. Sci. Mater. Electron. 25, 3473–3479 (2014)CrossRefGoogle Scholar
  24. 24.
    W. Stöber, A. Fink, E. Bohn, Controlled growth of mono-disperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968)CrossRefGoogle Scholar
  25. 25.
    L.M. Liz-Marzán, M. Giersig, P. Mulvaney, Synthesis of nanosized gold–silica core–shell particles. Langmuir 12, 4329–4335 (1996)CrossRefGoogle Scholar
  26. 26.
    M. Kari, M. Montazeri-Pour, M. Rajabi, V. Tizjang, S. Moghadas, Maximum SiO2 layer thickness by utilizing polyethylene glycol as the surfactant in synthesis of core/shell structured TiO2–SiO2 nano-composites. J. Mater. Sci. Mater. Electron. 25, 5560–5569 (2014)CrossRefGoogle Scholar
  27. 27.
    M. Montazeri-Pour, A. Ataie, Low temperature crystallization of barium ferrite nano-particles via co-precipitation method using di-ethylene glycol. Int. J. Mod. Phys. B 22, 3144–3152 (2008)CrossRefGoogle Scholar
  28. 28.
    Z. Liu, Z. Jian, J. Fang, X. Xu, X. Zhu, S. Wu, Low-temperature reverse micro-emulsion synthesis, characterization, and photo-catalytic performance of nano-crystalline titanium dioxide. Int. J. Photoenergy 2012, 1–8 (2012)Google Scholar
  29. 29.
    R.A. Aziz, I. Sopyan, Synthesis of TiO2–SiO2 powder and thin film photo-catalysts by sol–gel method. Indian J. Chem. 48, 951–957 (2009)CrossRefGoogle Scholar
  30. 30.
    M. Yoshinaka, K. Hirota, O. Yamaguchi, Formation and sintering of TiO2 (anatase) solid solution in the system TiO2–SiO2. J. Am. Ceram. Soc. 80, 2749–2753 (1997)CrossRefGoogle Scholar
  31. 31.
    M. Montazeri-Pour, N. Riahi-Noori, A. Mehdikhani, Synthesis of single-phase anatase TiO2 nano-particles by hydrothermal treatment with application potential for photo-anode electrodes of dye sensitized solar cells. J. Ceram. Process. Res. 14, 595–600 (2013)Google Scholar
  32. 32.
    M. Jung, NMR characterization on the preparation of sol–gel derived mixed oxide materials. Int. J. Inorg. Mater. 3, 471–478 (2001)CrossRefGoogle Scholar
  33. 33.
    Y. Zhang, S. Wei, H. Zhang, S. Liu, F. Nawaz, F.-S. Xiao, Nano-porous polymer monoliths as adsorptive supports for robust photo-catalyst of Degussa P25. J. Colloid Interface Sci. 339, 434–438 (2009)CrossRefGoogle Scholar
  34. 34.
    J.A. Gadsden, Infrared Spectra of Minerals and Related Inorganic Compounds, 1st edn. (Butterworth Ltd., Waltham, 1975)Google Scholar
  35. 35.
    M. Montazeri-Pour, A. Ataie, Synthesis of nano-crystalline barium ferrite in ethanol/water media. J. Mater. Sci. Technol. 25, 465–469 (2009)Google Scholar
  36. 36.
    D.A. Kumar, J.M. Shyla, F.P. Xavier, Synthesis and characterization of TiO2/SiO2 nano-composites for solar cell applications. Appl. Nanosci. 2, 429–436 (2012)CrossRefGoogle Scholar
  37. 37.
    W.-I. Kim, I.-K. Hong, Synthesis of monolithic titania–silica composite aero-gels with supercritical drying process. J. Ind. Eng. Chem. 9, 728–734 (2003)Google Scholar
  38. 38.
    D. Chen, D. Yang, Q. Wang, Z. Jiang, Effects of boron doping on photo-catalytic activity and microstructure of titanium dioxide nanoparticles. Ind. Eng. Chem. Res. 45, 4110–4116 (2006)CrossRefGoogle Scholar
  39. 39.
    S. Hofmann, Auger- and X-Ray Photoelectron Spectroscopy in Materials Science: A User-Oriented Guide (Springer, Berlin, 2013)CrossRefGoogle Scholar
  40. 40.
    J.M. Wagner, X-Ray Photoelectron Spectroscopy (Nova Science, New York, 2011)Google Scholar
  41. 41.
    H. Zhang, X. Luo, J. Xu, B. Xiang, D. Yu, Synthesis of TiO2/SiO2 core/shell nanocable arrays. J. Phys. Chem. B 108, 14866–14869 (2004)CrossRefGoogle Scholar
  42. 42.
    X. Gao, I.E. Wachs, TiO2–silica as catalysts: molecular structural characteristics and physico-chemical properties. Catal. Today 51, 233–254 (1999)CrossRefGoogle Scholar
  43. 43.
    W.D. Callister, D.G. Rethwisch, Materials Science and Engineering: An Introduction, 8th edn. (Wiley, Chichester, 2009)Google Scholar
  44. 44.
    S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area, and Porosity, 2nd edn. (Academic Press, London, 1982)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Vahide Tizjang
    • 1
  • Mehdi Montazeri-Pour
    • 2
  • Masoud Rajabi
    • 1
  • Maryam Kari
    • 1
  • Shahab Moghadas
    • 3
  1. 1.Department of Metallurgy and Materials Engineering, Faculty of Technology and EngineeringImam Khomeini International University (IKIU)QazvinIran
  2. 2.School of Metallurgy and Materials Engineering, College of EngineeringUniversity of TehranTehranIran
  3. 3.Materials and Energy Research Center (MERC)KarajIran

Personalised recommendations