Copper diffusion in germanium: connecting point defect parameters with bulk properties

  • A. Chroneos
  • Y. Panayiotatos
  • R. V. Vovk


Copper diffusion in germanium is fundamentally and technologically important as it has a very low activation energy and influences the precipitation and gettering of copper respectively. These constitute the understanding of copper’s diffusion properties in germanium over a range of temperatures and pressures important. In the present study we use the cBΩ model in which the defect Gibbs energy is proportional to the isothermal bulk modulus (B) and the mean volume per atom (Ω). The elastic and expansivity data is used in the description of the cBΩ model to derive the copper interstitial diffusion coefficient in germanium in the temperature range 827–1,176 K. The calculated results are discussed in view of the available experimental data.


Isothermal Bulk Modulus Metal Diffusion Interstitial Diffusion Copper Diffusion Metal Induce Lateral Crystallisation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C. Claeys, E. Simoen (eds.), Germanium-based technologies: from materials to devices (Elsevier, Amsterdam, 2007)Google Scholar
  2. 2.
    C. Janke, R. Jones, S. Öberg, P.R. Briddon, J. Mater. Sci.: Mater. Electron. 18, 775 (2007)Google Scholar
  3. 3.
    G. Impellizzeri, S. Boninelli, F. Priolo, E. Napolitani, C. Spinella, A. Chroneos, H. Bracht, J. Appl. Phys. 109, 113527 (2011)CrossRefGoogle Scholar
  4. 4.
    A. Chroneos, J. Mater. Sci.: Mater. Electron. 24, 1741 (2013)Google Scholar
  5. 5.
    A. Chroneos, H. Bracht, Appl. Phys. Rev. 1, 011301 (2014)CrossRefGoogle Scholar
  6. 6.
    M. Wu, Y.I. Alivov, H. Morkoc, J. Mater. Sci.: Mater. Electron. 19, 915 (2008)Google Scholar
  7. 7.
    A. Ritenour, A. Khakifirooz, D.A. Antoniadis, R.Z. Lei, W. Tsai, A. Dimoulas, G. Mavrou, Y. Panayiotatos, Appl. Phys. Lett. 88, 132107 (2006)CrossRefGoogle Scholar
  8. 8.
    A. Chroneos, U. Schwingenschlögl, A. Dimoulas, Ann. Phys. Berl. 524, 123 (2012)CrossRefGoogle Scholar
  9. 9.
    S.R. Herd, P. Chaudhari, M.H. Brodsky, J. Non-Cryst, Solids 7, 309 (1972)Google Scholar
  10. 10.
    A. Chroneos, J. Appl. Phys. 105, 056101 (2009)Google Scholar
  11. 11.
    A. Chroneos, H. Bracht, R.W. Grimes, B.P. Uberuaga, Appl. Phys. Lett. 92, 172103 (2008)CrossRefGoogle Scholar
  12. 12.
    H. Tahini, A. Chroneos, R.W. Grimes, U. Schwingenschlögl, A. Dimoulas, J. Phys. Condens. Matter 24, 195802 (2012)Google Scholar
  13. 13.
    S. Brotzmann, H. Bracht, J. Lundsgaard Hansen, A. Nylandsted Larsen, E. Simoen, E.E. Haller, J.S. Christensen, P. Werner, Phys. Rev. B 77, 235207 (2008)CrossRefGoogle Scholar
  14. 14.
    A. Chroneos, R.W. Grimes, B.P. Uberuaga, H. Bracht, Phys. Rev. B 77, 235208 (2008)CrossRefGoogle Scholar
  15. 15.
    R. Kube, H. Bracht, A. Chroneos, M. Posselt, B. Schmidt, J. Appl. Phys. 106, 063534 (2009)CrossRefGoogle Scholar
  16. 16.
    H. Tahini, A. Chroneos, R.W. Grimes, U. Schwingenschlögl, H. Bracht, Appl. Phys. Lett. 99, 072112 (2011)CrossRefGoogle Scholar
  17. 17.
    A. Chroneos, C.A. Londos, E.N. Sgourou, J. Appl. Phys. 110, 093507 (2011)CrossRefGoogle Scholar
  18. 18.
    E.N. Sgourou, D. Timerkaeva, C.A. Londos, D. Aliprantis, A. Chroneos, D. Caliste, P. Pochet, J. Appl. Phys. 113, 113506 (2013)CrossRefGoogle Scholar
  19. 19.
    H.A. Tahini, A. Chroneos, S.C. Middleburgh, U. Schwingenschlögl, R.W. Grimes, J. Mater. Chem. A. (2015). doi: 10.1039/C4TA06210H
  20. 20.
    A. Giese, N.A. Stolwijk, H. Bracht, Appl. Phys. Lett. 77, 642 (2000)CrossRefGoogle Scholar
  21. 21.
    H. Bracht, Mater. Sci. Semicond. Process. 7, 113 (2004)CrossRefGoogle Scholar
  22. 22.
    C. Zener, J. Appl. Phys. 22, 372 (1951)CrossRefGoogle Scholar
  23. 23.
    P. Varotsos, K. Alexopoulos, Phys. Rev. B 15, 411 (1977)Google Scholar
  24. 24.
    P. Varotsos, K. Alexopoulos, Phys. Rev. B 15, 2348 (1977)CrossRefGoogle Scholar
  25. 25.
    P. Varotsos, K. Alexopoulos, J. Phys. Paris Lett. 38, L455 (1977)CrossRefGoogle Scholar
  26. 26.
    P. Varotsos, W. Ludwig, K. Alexopoulos, Phys. Rev. B 18, 2683 (1978)CrossRefGoogle Scholar
  27. 27.
    P. Varotsos, K. Alexopoulos, Phys. Rev. B 22, 3130 (1980)CrossRefGoogle Scholar
  28. 28.
    P. Varotsos, K. Alexopoulos, Phys. Rev. B 24, 904 (1981)CrossRefGoogle Scholar
  29. 29.
    P. Varotsos, K. Alexopoulos, Phys. Rev. B 30, 7305 (1984)CrossRefGoogle Scholar
  30. 30.
    J. Philibert, Defect Diffus. Forum 249, 61 (2006)Google Scholar
  31. 31.
    P. Varotsos, K. Alexopoulos, Thermodynamics of point defects and their relation with the bulk properties (North-Holland Publishing Company, Amsterdam, 1986)Google Scholar
  32. 32.
    P. Varotsos, N. Sarlis, M. Lazaridou, Phys. Rev. B 59, 24 (1999)CrossRefGoogle Scholar
  33. 33.
    P. Varotsos, Phys. Rev. B 75, 172107 (2007)CrossRefGoogle Scholar
  34. 34.
    P. Varotsos, J. Appl. Phys. 101, 123503 (2007)CrossRefGoogle Scholar
  35. 35.
    H.B. Su, D.O. Welch, W. Wong-Ng, L.P. Cook, Z. Yang, Appl. Phys. Lett. 91, 172510 (2007)CrossRefGoogle Scholar
  36. 36.
    B.H. Zhang, X.P. Wu, Appl. Phys. Lett. 100, 051901 (2012)CrossRefGoogle Scholar
  37. 37.
    I. Sakelis, J. Appl. Phys. 112, 013504 (2012)CrossRefGoogle Scholar
  38. 38.
    B.H. Zhang, AIP Adv. 4, 017128 (2014)CrossRefGoogle Scholar
  39. 39.
    F. Vallianatos, V. Saltas, Phys. Chem. Miner. 41, 181 (2014)CrossRefGoogle Scholar
  40. 40.
    E.S. Skordas, Solid State Ion. 261, 26 (2014)CrossRefGoogle Scholar
  41. 41.
    P. Varotsos, K. Eftaxias, V. Hadjicontis, Phys. Rev. B 38, 6328 (1988)CrossRefGoogle Scholar
  42. 42.
    H.M. Kagaya, N. Shoji, T. Soma, Phys. Stat. Solidi B 139, 417 (1987)CrossRefGoogle Scholar
  43. 43.
    R.S. Krishnan, R. Srinivasan, S. Devanarayanan, Thermal expansion of crystals (Pergamon Press, Oxford, 1979)Google Scholar
  44. 44.
    V. Hadjicontis, K. Eftaxias, J. Phys. Chem. Solids 52, 437 (1991)CrossRefGoogle Scholar
  45. 45.
    K. Eftaxias, V. Hadjicontis, Phys. Stat. Solidi B 160, K9 (1990)CrossRefGoogle Scholar
  46. 46.
    E. Dologlou, J. Appl. Phys. 110, 036103 (2011)CrossRefGoogle Scholar
  47. 47.
    A. Chroneos, R.V. Vovk, J. Mater. Sci.: Mater. Electron. (2015). doi: 10.1007/s10854-014-2655-y

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of MaterialsImperial College LondonLondonUK
  2. 2.Faculty of Engineering and ComputingCoventry UniversityCoventryUK
  3. 3.Department of Mechanical EngineeringTEI of PiraeusAthensGreece
  4. 4.Physics DepartmentV. Karazin Kharkiv National UniversityKharkivUkraine

Personalised recommendations