Synthesis of Co-doped ZnO nanoparticles by sol–gel method and its characterization

  • J. El Ghoul
  • M. Kraini
  • L. El Mir


Cobalt doped ZnO nanoparticles with different Co contents have been synthesized by a sol–gel processing technique. In our approach, the water for hydrolysis was slowly released by esterification reaction followed by a supercritical drying in ethyl alcohol. The structural, morphological, optical and magnetic properties of the as-prepared nanoparticles were investigated by XRD, transmission electron microscopy, UV measurements, photoluminescence and superconducting quantum interference device. The structural properties showed that the obtained nanoparticles are in wurtzite single crystalline phase and no secondary phases were detected which indicated that Co substituted Zn ions. The energy band gap of the ZnO host matrix decreases gradually by increasing the doping concentration. The photoluminescence spectra exhibit intensive emission in the UV range. This emission presents a small shift to longer wavelengths and remarkable decreases in the intensity with increasing Co content. The Magnetic measurements at room temperature reveal diamagnetic behavior for the samples with lower doping concentrations; however, at higher Co content, we noted the presence of both paramagnetic and ferromagnetic behaviors.


Ferromagnetic Behavior Optical Diffuse Reflectance Spectrum Cobalt Dope Zinc Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A.P. Alivisatos, Science 271, 933–937 (1996)CrossRefGoogle Scholar
  2. 2.
    D.J. Norris, N. Yao, F.T. Charnock, T.A. Kennedy, Nano Lett. 1, 429–433 (2001)CrossRefGoogle Scholar
  3. 3.
    M. Nirmal, L. Brus, Acc. Chem. Res. 32, 407–414 (1999)CrossRefGoogle Scholar
  4. 4.
    H.M. Yang, S. Nie, Mater. Chem. Phys. 114, 279–282 (2009)CrossRefGoogle Scholar
  5. 5.
    M. Yang, Z.X. Guo, K.H. Qiu, J.P. Long, G.F. Yin, D.G. Guan, S.T. Liu, S.J. Zhou, Appl. Surf. Sci. 256, 4201–4205 (2010)CrossRefGoogle Scholar
  6. 6.
    S.S. Lin, J.H. Song, Y.F. Lu, Z.L. Wang, Nanotechnology 20, 365703 (2009)CrossRefGoogle Scholar
  7. 7.
    M. Krunks, A. Katerski, T. Dedova, I.O. Acik, A. Mere, Sol. Energy Mater. Sol. Cells 92, 1016–1019 (2008)CrossRefGoogle Scholar
  8. 8.
    S. Rasouli, S.J. Moeen, J. Alloys Compd. 509, 1915–1919 (2011)CrossRefGoogle Scholar
  9. 9.
    J.B. Cui, Y.C. Soo, T.P. Chen, J. Phys. Chem. C 112, 4475–4479 (2008)CrossRefGoogle Scholar
  10. 10.
    Z. Sofer, D. Sedmidubský, S. Huber, J. Hejtmanek, M. Marysko, K. Jurek, M. Mikulics, J. Cryst. Growth 314, 123–128 (2011)CrossRefGoogle Scholar
  11. 11.
    X.R. Qu, D.C. Jia, Mater. Lett. 63, 412–414 (2009)CrossRefGoogle Scholar
  12. 12.
    Q. Chen, J.L. Wang, Chem. Phys. Lett. 474, 336–341 (2009)CrossRefGoogle Scholar
  13. 13.
    H.B. Carvalho, M.P.F. Godoy, R.W.D. Paes, M. Mir, A.O. Zevallos, F. Iikawa, M.J.S.P. Brasil, V.A. Chitta, W.B. Ferraz, M.A. Boselli, A.C.S. Sabioni, J. Appl. Phys. 108, 033914 (2010)CrossRefGoogle Scholar
  14. 14.
    F. Ochanda, K. Cho, D. Andala, T.C. Keane, A. Atkinson, W.E. Jones, Langmuir 25, 7547–7552 (2009)CrossRefGoogle Scholar
  15. 15.
    B.Q. Wang, X.D. Shan, Q. Fu, J. Iqbal, Y. Lv, H.G. Fu, D.P. Yu, Phys. E 41, 413–417 (2009)CrossRefGoogle Scholar
  16. 16.
    N. Bahadur, A.K. Srivastava, S. Kumar, M. Deepa, B. Nag, Thin Solid Films 518, 5257–5264 (2010)CrossRefGoogle Scholar
  17. 17.
    P.K. Sharma, R.K. Dutta, A.C. Pandey, J. Colloid, Interface Sci. 345, 149–153 (2010)CrossRefGoogle Scholar
  18. 18.
    X.Y. Xu, C.B. Cao, J. Alloys Compd. 501, 265–268 (2010)CrossRefGoogle Scholar
  19. 19.
    J.H. Yang, L.Y. Zhao, X. Ding, L.L. Yang, Y.J. Zhang, Y.X. Wang, H.L. Liu, Mater. Sci. Eng. B 162, 143–146 (2009)CrossRefGoogle Scholar
  20. 20.
    M.E. Mercurio, A.W. Carbonari, M.R. Cordeiro, R.N. Saxena, L.Z. D’Agostino, J. Magn. Magn. Mater. 322, 1195–1197 (2010)CrossRefGoogle Scholar
  21. 21.
    X.L. Zhang, R. Qiao, J.C. Kim, Y.S. Kang, Cryst. Growth Des. 8, 2609–2613 (2008)CrossRefGoogle Scholar
  22. 22.
    A. Singhal, S.N. Achary, J. Manjanna, S. Chatterjee, P. Ayyub, A.K. Tyagi, J. Phys. Chem. C 114, 3422–3430 (2010)CrossRefGoogle Scholar
  23. 23.
    L. El Mir, A. Amlouk, C. Barthou, S. Alaya, J. Phys. B 388, 412–417 (2007)CrossRefGoogle Scholar
  24. 24.
    L. El Mir, Z. Ben Ayadi, M. Saadoun, H. Von Bardeleben, K. Djessas, A. Zeinert, Phys. Status Solidi 204, 3266–3277 (2007)CrossRefGoogle Scholar
  25. 25.
    L. El Mir, Z. Ben Ayadi, H. Rahmouni, J. El Ghoul, K. Djessas, H.J. von Bardeleben, Thin Solid Films 517, 6007–6011 (2009)CrossRefGoogle Scholar
  26. 26.
    J. El Ghoul, C. Barthou, L. El Mir, Superlattices Microstruct. 51, 942–951 (2012)CrossRefGoogle Scholar
  27. 27.
    L.W. Yang, X.L. Wu, T. Qiu, G.G. Siu, P.K. Chu, J. Appl. Phys. 99, 074303–074307 (2006)CrossRefGoogle Scholar
  28. 28.
    J. El Ghoul, C. Barthou, L. El Mir, Physica E 44, 1910–1915 (2012)CrossRefGoogle Scholar
  29. 29.
    K.J. Kim, Y.R. Park, Appl. Phys. Lett. 81, 1420–1422 (2002)CrossRefGoogle Scholar
  30. 30.
    D.K. Sardar, J.B. Gruber, B. Zandi, M. Ferry, M.R. Kokta, J. Appl. Phys. 91, 4846–4852 (2002)CrossRefGoogle Scholar
  31. 31.
    S. Ramachandran, A. Tiwari, J. Narayan, Appl. Phys. Lett. 84, 5255–5257 (2004)CrossRefGoogle Scholar
  32. 32.
    A. Fouchet, W. Prellier, P. Padhan, Ch. Simon, B. Mercey, V.N. Kulkarni, T. Venkatesan, J. Appl. Phys. 95, 7187–7189 (2004)CrossRefGoogle Scholar
  33. 33.
    A.T. Kuvarega, R.W.M. Krause, B.B. Mamba, J. Phys. Chem. C 115, 22110–22120 (2011)CrossRefGoogle Scholar
  34. 34.
    D.A. Schwartz, N.S. Norberg, Q.P. Nguyen, J.M. Parker, D.R. Gamelin, J. Am. Chem. Soc. 125, 13205–13218 (2003)CrossRefGoogle Scholar
  35. 35.
    K. Ando, H. Saito, Z. Jin, T. Fukumura, M. Kawasaki, Y. Matsumoto, H. Koinuma, J. Appl. Phys. 89, 7284–7286 (2001)CrossRefGoogle Scholar
  36. 36.
    K.J. Kim, Y.R. Park, Appl. Phys. Lett. 81, 1420–1422 (2002)CrossRefGoogle Scholar
  37. 37.
    Y.J. Li, C.Y. Wang, M.Y. Lu, K.M. Li, L.J. Chen, Cryst. Growth Des. 8, 2598–2602 (2008)CrossRefGoogle Scholar
  38. 38.
    J.H. Kim, H. Kim, D. Kim, S.G. Yoon, W.K. Choo, Solid State Commun. 131, 677–680 (2004)CrossRefGoogle Scholar
  39. 39.
    W. Pacuski, D. Ferrand, J. Cibert, C. Deparis, J.A. Gaj, P. Kossacki, C. Morhain, Phys. Rev. B 73, 035214–035226 (2006)CrossRefGoogle Scholar
  40. 40.
    J. Antony, S. Pendyala, A. Sharma, X.B. Chen, J. Morrison, L. Bergman, Y. Qiang, J. Appl. Phys. 97, 10D307-1 (2005)CrossRefGoogle Scholar
  41. 41.
    S. Yang, Y. Zhang, J. Magn. Magn. Mater. 334, 52–58 (2013)CrossRefGoogle Scholar
  42. 42.
    R. Janisch, P. Gopal, N.A. Spaldin, J. Phys. Condens. Matter 17, R657–R689 (2005)CrossRefGoogle Scholar
  43. 43.
    J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173–179 (2005)CrossRefGoogle Scholar
  44. 44.
    T. Büsgen, M. Hilgendorff, S. Irsen, F. Wilhelm, A. Rogalev, D. Goll, M. Giersig, J. Phys. Chem. C 112, 2412–2417 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of PhysicsCollege of Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU)RiyadhSaudi Arabia
  2. 2.Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Faculty of Sciences in GabesGabes UniversityGabesTunisia

Personalised recommendations