Advertisement

Photocatalytic activity of hydrothermally-synthesized single-crystalline Bi3.15Nd0.85Ti3O12 nanoplates

  • Hongyan Qi
  • Yong Liu
  • Ming Xiao
  • Huaixing Wang
  • Shifang Wang
  • Haifeng Luo
  • Liang Huang
Article

Abstract

Single-crystalline Bi3.15Nd0.85Ti3O12 (BNdT) nanoplates were synthesized through a hydrothermal process and BNdT microplates were obtained by post-annealing of the as-prepared nanoplates. Structural and morphological characterizations revealed that all the as-prepared products were orthorhombic layered-perovskite and plate-like in shape. The photocatalytic activity of the BNdT nanoplates was evaluated using the degradation of methyl orange (MO) solution. When the nanoplates were used as the catalyst, up to 70 % MO was decolorized after UV irradiation for 195 min, whereas lower than 8 % MO was decolorized when the microplates were used under the same conditions. The photocatalytic decolorization of MO solution by the catalyst was a pseudo-first-order kinetics reaction.

Keywords

Photocatalytic Activity Methyl Orange BiFeO3 BiVO4 Photogenerated Carrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the National Science Foundation of China (11402081).

References

  1. 1.
    A. Fujishima, K. Honda, Nature 238, 37 (1972)CrossRefGoogle Scholar
  2. 2.
    A. Kudo, K. Omori, H. Kato, J. Am. Chem. Soc. 121, 11459 (1999)CrossRefGoogle Scholar
  3. 3.
    M. Wiegel, W. Middel, G. Blasse, J. Mater. Chem. 5, 981 (1995)CrossRefGoogle Scholar
  4. 4.
    W.T. Fu, Phys. C 250, 67 (1995)CrossRefGoogle Scholar
  5. 5.
    M. Oshikiri, M. Boero, J.H. Ye, Z.G. Zou, G. Kido, J. Chem. Phys. 117, 7313 (2002)CrossRefGoogle Scholar
  6. 6.
    J.W. Tang, Z.G. Zou, J.H. Ye, Angew. Chem. Int. Ed. 43, 4463 (2004)CrossRefGoogle Scholar
  7. 7.
    H.G. Kim, D.W. Hwang, J.S. Lee, J. Am. Chem. Soc. 126, 8912 (2004)CrossRefGoogle Scholar
  8. 8.
    H.B. Fu, C.S. Pan, W.Q. Yao, Y.F. Zhu, J. Phys. Chem. B 109, 22432 (2005)CrossRefGoogle Scholar
  9. 9.
    F. Gao, X.Y. Chen, K. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu, Z.G. Zou, J.M. Liu, Adv. Mater. 19, 2889 (2007)CrossRefGoogle Scholar
  10. 10.
    W.F. Yao, X.H. Xu, H. Wang, J.T. Zhou, X.N. Yang, Y. Zhang, S.X. Shang, B.B. Huang, Appl. Catal. B Environ. 52, 109 (2004)CrossRefGoogle Scholar
  11. 11.
    S.E. Cummins, L.E. Cross, J. Appl. Phys. 39, 2268 (1968)CrossRefGoogle Scholar
  12. 12.
    Y. Inoue, K. Sato, K. Sato, H. Miyama, J. Phys. Chem. 90, 2809 (1986)CrossRefGoogle Scholar
  13. 13.
    A. Kudo, S. Hijii, Chem. Lett. 28, 1103 (1999)CrossRefGoogle Scholar
  14. 14.
    T. Goto, Y. Noguchi, M. Soga, M. Miyayam, Mater. Res. Bull. 40, 1044 (2005)CrossRefGoogle Scholar
  15. 15.
    F. Lahoz, Opt. Mater. 27, 1762 (2005)CrossRefGoogle Scholar
  16. 16.
    H.Y. Qi, Y.J. Qi, W.N. Ye, C.J. Lu, J. Nanosci. Nanotechnol. 10, 5350 (2010)CrossRefGoogle Scholar
  17. 17.
    K. Liang, Y.J. Qi, C.J. Lu, J. Raman Spectrosc. 40, 2088 (2009)CrossRefGoogle Scholar
  18. 18.
    M. Osada, M. Tada, M. Kakihana, T. Watanabe, H. Funakubo, Jpn. J. Appl. Phys. (Part 1) 40, 5572 (2001)CrossRefGoogle Scholar
  19. 19.
    P.R. Graves, G. Hua, S. Myhra, J.G. Thompson, J. Solid State Chem. 114, 112 (1995)CrossRefGoogle Scholar
  20. 20.
    J.A. Sanjurjo, E.L. Cruz, G. Burns, Phys. Rev. B 28, 7260 (1983)CrossRefGoogle Scholar
  21. 21.
    W. Ma, M. Zhang, Z. Lu, Phys. Status Solidi A 166, 811 (1988)CrossRefGoogle Scholar
  22. 22.
    J.B. Blum, Mater. Lett. 3, 360 (1985)CrossRefGoogle Scholar
  23. 23.
    Y.H. Gao, Y. Bando, T. Sato, Y.F. Zhang, Appl. Phys. Lett. 81, 2267 (2002)CrossRefGoogle Scholar
  24. 24.
    K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscow, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985)CrossRefGoogle Scholar
  25. 25.
    K. Liang, X.Q. He, Y.J. Qi, C.J. Lu, J. Cryst. Growth 310, 2471 (2008)CrossRefGoogle Scholar
  26. 26.
    A.T. Bell, Science 299, 1688 (2003)CrossRefGoogle Scholar
  27. 27.
    G. Takashi, Y. Noguchi, Mater. Res. Bull. 40, 1044 (2005)CrossRefGoogle Scholar
  28. 28.
    M.Q. Cai, Z. Yin, M.S. Zhang, Y.Z. Li, Chem. Phys. Lett. 399, 89 (2004)CrossRefGoogle Scholar
  29. 29.
    D.F. Ollis, Environ. Sci. Technol. 6, 480 (1985)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Mechanical and Electrical Engineering, Institute of Information Science and TechnologyHubei University of EducationWuhanPeople’s Republic of China

Personalised recommendations