Advertisement

Effect of Ca substitution sites on dielectric properties and relaxor behavior of Ca doped barium strontium titanate ceramics

  • Chao Chen
  • Hourong Zhuang
  • Xiaona Zhu
  • Dou Zhang
  • Kechao Zhou
  • Haixue Yan
Article

Abstract

Microstructure, dielectric properties, and ferroelectric relaxor behavior of Ca doped barium strontium titanate (BSCT) ceramics prepared by solid-state reaction were investigated. It was demonstrated that the unit cell volume of the BSCT ceramics firstly decreases with the increase of Ca contents up to x = 0.08, but increases with further addition of Ca (x ≥ 0.12). The shrinkage of the unit cell volume resulted from the substitution of Ba2+ by Ca2+ when x ≤ 0.08, which enhanced the relaxor behavior of the ferroelectrics. Conversely, a small amount of Ca2+ substituted for Ti4+ site when x ≥ 0.12, which weakens the relaxor behavior of the BSCT ceramics. The 8 mol % doped BSCT ceramic yielded the maximum index of relaxation (γ) of 1.90 and made it a promising candidate for future industrial application of efficient and eco-friendly relaxor ferroelectric materials.

Keywords

BaTiO3 Perovskite Structure Unit Cell Volume Relaxor Behavior Barium Strontium Titanate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Number 51072235), Natural Science Foundation of Hunan Province (Number 11JJ1008), Ph.D. Programs Foundation of Ministry of Education of China (Number 20110162110044) and Defense Industrial Technology Development Program (Number A1420133028).

References

  1. 1.
    L.E. Cross, Ferroelectrics 76, 241–267 (1987)CrossRefGoogle Scholar
  2. 2.
    T. Wu, Y.P. Pu, P. Gao, D. Liu, J. Mater. Sci.: Mater. Electron. 24, 4105–4112 (2013)Google Scholar
  3. 3.
    L. Bellaiche, D. Vanderbilt, Phys. Rev. Lett. 83, 1347 (1999)CrossRefGoogle Scholar
  4. 4.
    S.-E. Park, T.R. Shrout, J. Appl. Phys. 82, 1804–1811 (1997)CrossRefGoogle Scholar
  5. 5.
    P.M. Rorvik, T. Grande, M.A. Einarsrud, Adv. Mater. 23, 4007–4034 (2011)CrossRefGoogle Scholar
  6. 6.
    F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, Mater. Sci. Eng. R-Rep. 83, 1–59 (2014)CrossRefGoogle Scholar
  7. 7.
    J.M. Hu, Z. Li, L.Q. Chen, C.W. Nan, Nat. Commun. 2, 553 (2011)CrossRefGoogle Scholar
  8. 8.
    R. Laishram, S.K. Pandey, O.P. Thakur, D.K. Bhattacharya, J. Alloy. Compd. 579, 205–208 (2013)CrossRefGoogle Scholar
  9. 9.
    V.V. Shvartsman, D.C. Lupascu, J. Am. Ceram. Soc. 95, 1–26 (2012)CrossRefGoogle Scholar
  10. 10.
    M.I. Morozov, M.A. Einarsrud, T. Grande, D. Damjanovic, Ferroelectrics 439, 88–94 (2012)CrossRefGoogle Scholar
  11. 11.
    A. Rouahi, A. Kahouli, A. Sylvestre, E. Defay, B. Yangui, J. Alloy. Compd. 529, 84–88 (2012)CrossRefGoogle Scholar
  12. 12.
    N. Isaka, K. Ohkawa, H. Kiyono, H. Itoh, J. Takahashi, J. Mater. Sci.: Mater. Electron. 19, 1233–1239 (2008)Google Scholar
  13. 13.
    X. Cheng, M. Shen, Mater. Res. Bull. 42, 1662–1668 (2007)CrossRefGoogle Scholar
  14. 14.
    C. Ang, Z. Yu, Phys. Rev. B 61, 11363–11366 (2000)CrossRefGoogle Scholar
  15. 15.
    N. Setter, L.E. Cross, J. Appl. Phys. 51, 4356–4360 (1980)CrossRefGoogle Scholar
  16. 16.
    Y. Song, Y. Shen, P.H. Hu, Y.H. Lin, M. Li, C.W. Nan, Appl. Phys. Lett. 101, 152904 (2012)CrossRefGoogle Scholar
  17. 17.
    D. Zhang, T.W. Button, V.O. Sherman, A.K. Tagantsev, T. Price, D. Iddles, J. Eur. Ceram. Soc. 30, 407–412 (2010)CrossRefGoogle Scholar
  18. 18.
    W.Q. Zhang, J.W. Wang, S.X. Xue, S.H. Liu, B. Shen, J.W. Zhai, J. Mater. Sci.: Mater. Electron. 25, 4145–4149 (2014)Google Scholar
  19. 19.
    L.F. Zhu, B.P. Zhang, X.K. Zhao, L. Zhao, P.F. Zhou, J.F. Li, J. Am. Ceram. Soc. 96, 241–245 (2013)CrossRefGoogle Scholar
  20. 20.
    C.R.K. Mohan, P.K. Bajpai, Phys. B 403, 2173–2188 (2008)CrossRefGoogle Scholar
  21. 21.
    K.A. Müller, H. Burkard, Phys. Rev. B 19, 3593–3602 (1979)CrossRefGoogle Scholar
  22. 22.
    B. Su, T.W. Button, J. Appl. Phys. 95, 1382–1385 (2004)CrossRefGoogle Scholar
  23. 23.
    V.V. Lemanov, A.V. Sotnikov, E.P. Smirnova, M. Weihnacht, R. Kunze, Solid State Commun. 110, 611–614 (1999)CrossRefGoogle Scholar
  24. 24.
    D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig, J. Appl. Phys. 68, 2916–2921 (1990)CrossRefGoogle Scholar
  25. 25.
    F. Bahri, H. Khemakhem, Ceram. Int. 39, 7571–7575 (2013)CrossRefGoogle Scholar
  26. 26.
    Y. Li, X. Yao, L. Zhang, Ceram. Int. 30, 1283–1287 (2004)CrossRefGoogle Scholar
  27. 27.
    P.S.R. Krishna, D. Pandey, V.S. Tiwari, R. Chakravarthy, B.A. Dasannacharya, Appl. Phys. Lett. 62, 231–233 (1993)CrossRefGoogle Scholar
  28. 28.
    K. Uchino, E. Sadanaga, T. Hirose, J. Am. Ceram. Soc. 72, 1555–1558 (1989)CrossRefGoogle Scholar
  29. 29.
    V. Ern, R.E. Newnham, J. Am. Ceram. Soc. 44, 199 (1961)CrossRefGoogle Scholar
  30. 30.
    R. Shannon, Acta Crystallogr. Sect. A 32, 751–767 (1976)CrossRefGoogle Scholar
  31. 31.
    A.E. Glazounov, A.K. Tagantsev, A.J. Bell, Phys. Rev. B 53, 11281–11284 (1996)CrossRefGoogle Scholar
  32. 32.
    L. Zhang, X. Wang, W. Yang, H. Liu, X. Yao, J. Appl. Phys. 104, 014104 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Chao Chen
    • 1
  • Hourong Zhuang
    • 1
  • Xiaona Zhu
    • 2
  • Dou Zhang
    • 1
  • Kechao Zhou
    • 1
  • Haixue Yan
    • 3
  1. 1.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaChina
  2. 2.Laboratory of Dielectric Materials, Department of Materials Science and EngineeringZhejiang UniversityHangzhouChina
  3. 3.School of Engineering and Materials ScienceQueen Mary University of LondonLondonUK

Personalised recommendations