Sol–gel synthesis, paramagnetism, photoluminescence and optical properties of Gd-doped and Bi–Gd-codoped hybrid organo-silica glasses

  • S. M. Abo-Naf
  • S. A. M. Abdel-Hameed
  • M. A. Marzouk
  • R. L. Elwan


Multifunctional phosphors possessing paramagnetic and semiconducting properties have been synthesized by the sol–gel method. These phosphors are composed of Gd-doped and Bi–Gd-codoped hybrid ethylene glycol (EG)-modified silica glasses. The chemical composition of these hybrids is constituted from 1.5:1 molar ratio of EG:silica, doped with 3 mol% of Gd2O3 in case of the Gd-doped hybrid and with 3 mol% of both of the Bi2O3 and Gd2O3 in case of the Bi–Gd-codoped hybrid. The synthesized hybrid glasses, in the form of transparent and crack-free bulk samples, were analyzed with powder X-ray diffraction, differential thermal analysis coupled with thermogravimetry, vibrating sample magnetometer (VSM), Fourier transform infrared and ultraviolet–visible spectroscopy. Paramagnetic behavior of the glasses was confirmed with VSM results. Absorption properties of the Gd-doped glass in the UV region have three characteristic peaks at 240, 276 and 352 nm. Introduction of bismuth produces additional band at 423 nm in the visible region. Photoluminescence of the glasses was investigated by excitation and emission spectroscopy. Interestingly, excited states other than f–f states are emphasized. Upon UV light excitation at 204 and 274 nm, the Gd-doped glass exhibits phosphorescence visible triplet; blue, green and red; emissions. Under UV light excitation at 304 nm, only blue emission was obtained. These emissions originate from the low-energy intraligand (IL) emissions induced by the Gd3+ in the EG ligand due to the heavy-atom effect and paramagnetism of Gd3+ ions. Incorporation of Bi3+ increases the intensity of Gd–EG–IL emissions and, thus, controls over the luminescence intensity of blue, green and red emissions to achieve white overall emission.


Gd2O3 Magnetic Resonance Imaging Contrast Agent Molecular Magnet Urbach Energy Room Temperature Phosphorescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994)CrossRefGoogle Scholar
  2. 2.
    D. Di Martino, N. Chiodini, M. Fasoli, F. Moretti, A. Vedda, A. Baraldi, E. Buffagni, R. Capelletti, M. Mazzera, M. Nikl, G. Angella, C.B. Azzoni, J. Non-Cryst. Solids 354, 3817 (2008)CrossRefGoogle Scholar
  3. 3.
    W.T. Carnall, G.L. Goodman, K. Rajnak, R.S. Rana, J. Chem. Phys. 90, 3443 (1989)CrossRefGoogle Scholar
  4. 4.
    E. Pavitra, J.S. Yu, Ceram. Int. 39, 1029 (2013)CrossRefGoogle Scholar
  5. 5.
    O. Ponta, H. Mocuta, M. Vasilescu, S. Simon, J. Sol-Gel. Sci. Technol. 58, 530 (2011)CrossRefGoogle Scholar
  6. 6.
    S. Rada, M. Rada, E. Culea, J. Non-Cryst. Solids 357, 62 (2011)CrossRefGoogle Scholar
  7. 7.
    V. Singh, G. Sivaramaiah, J.L. Rao, S.H. Kim, J. Lumin. 143, 162 (2013)CrossRefGoogle Scholar
  8. 8.
    J. Zhao, C. Guo, J. Yu, R. Yu, Opt. Laser Technol. 45, 62 (2013)CrossRefGoogle Scholar
  9. 9.
    X.T. Wei, Y.H. Chen, X.R. Cheng, M. Yin, W. Xu, Appl. Phys. B 99, 763 (2010)CrossRefGoogle Scholar
  10. 10.
    M. Ajmal, TSh Atabaev, Opt. Mater. 35, 1288 (2013)CrossRefGoogle Scholar
  11. 11.
    J.E. Lee, N. Lee, H. Kim, J. Kim, S.H. Choi, J.H. Kim, T. Kim, I.C. Song, S.P. Park, W.K. Moon, T. Hyeon, J. Am. Chem. Soc. 132, 552 (2010)CrossRefGoogle Scholar
  12. 12.
    H. Schmidt, J. Non-Cryst. Solids 100, 51 (1988)CrossRefGoogle Scholar
  13. 13.
    C.J. Brinker, G.W. Scherer, Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing (Academic Press, New York, 1990)Google Scholar
  14. 14.
    L.L. Hench, J.K. West, Chem. Rev. 90, 33 (1990)CrossRefGoogle Scholar
  15. 15.
    J. Livage, C. Sanchez, J. Non-Cryst. Solids 145, 11 (1992)CrossRefGoogle Scholar
  16. 16.
    S. Sakka (ed.), Handbook of Sol–Gel Science and Technology: Processing, Characterization and Application (Kluwer, Boston, 2005)Google Scholar
  17. 17.
    H. Schmidt, J. Non-Cryst. Solids 73, 681 (1985)CrossRefGoogle Scholar
  18. 18.
    H. Schmidt, G. Jonschker, S. Goedicke, M. Mennig, J. Sol-Gel. Sci. Technol. 19, 39 (2000)CrossRefGoogle Scholar
  19. 19.
    G. Schottner, Chem. Mater. 13, 3422 (2001)CrossRefGoogle Scholar
  20. 20.
    S.M. Abo-Naf, M.A. Marzouk, R.L. Elwan, J. Mater. Sci.: Mater. Electron. 23, 2293 (2012)Google Scholar
  21. 21.
    Y. Lin, Y. Chang, W. Yang, B. Tsai, J. Non-Cryst. Solids 352, 789 (2006)CrossRefGoogle Scholar
  22. 22.
    D. Thangaraju, A. Durairajan, S.M. Babu, Y. Hayakawa, J. Alloys Compd. 509, 9890 (2011)CrossRefGoogle Scholar
  23. 23.
    A.A. Kaufman, R.O. Hansen, R.L.K. Kleinberg, in Methods in Geochemistry and Geophysics, Principles of the Magnetic Methods in Geophysics. Paramagnetism, Diamagnetism and Ferromagnetism, vol. 42 (Elsevier Science, Oxford, 2009), pp. 207–254Google Scholar
  24. 24.
    C. Rümenapp, B. Gleich, A. Haase, Pharm. Res. 29, 1165 (2012)CrossRefGoogle Scholar
  25. 25.
    E. Pérez-Mayoral, V. Negri, J. Soler-Padrós, S. Cerdán, P. Ballesteros, Eur. J. Radiol. 67, 453 (2008)CrossRefGoogle Scholar
  26. 26.
    S. Cheng, D. Shen, X. Zhu, X. Tian, D. Zhou, L. Fan, Eur. Polym. J. 45, 2767 (2009)CrossRefGoogle Scholar
  27. 27.
    Z. Ahmad, J.E. Mark, Chem. Mater. 13, 3320 (2001)CrossRefGoogle Scholar
  28. 28.
    X. Li, M. Yu, Z. Hou, G. Li, P. Ma, W. Wang, Z. Cheng, J. Lin, J. Solid State Chem. 184, 141 (2011)CrossRefGoogle Scholar
  29. 29.
    P. Judeinstein, H. Schmidt, J. Sol-Gel. Sci. Technol. 3, 189 (1994)CrossRefGoogle Scholar
  30. 30.
    A. Hou, H. Chen, Mater. Sci. Eng., B 167, 124 (2010)CrossRefGoogle Scholar
  31. 31.
    S.M. Abo-Naf, R.L. Elwan, M.A. Marzouk, J. Mater. Sci.: Mater. Electron. 23, 1022 (2012)Google Scholar
  32. 32.
    E. Culea, L. Pop, P. Pascuta, M. Bosca, J. Mol. Struct. 924–926, 192 (2009)CrossRefGoogle Scholar
  33. 33.
    A.T.M. Anishur Rahman, K. Vasilev, P. Majewski, J. Colloid Interface Sci. 354, 592 (2011)CrossRefGoogle Scholar
  34. 34.
    E.V. Mal’chukova, A.I. Nepomnyashchikh, B. Boizot, T.S. Shamirzaev, G. Petite, Phys. Solid State 52, 1919 (2010)CrossRefGoogle Scholar
  35. 35.
    M.A. Marzouk, J. Mol. Struct. 1019, 80 (2012)CrossRefGoogle Scholar
  36. 36.
    D. Thangaraju, A. Durairajan, D. Balaji, S. Moorthy Babu, Y. Hayakawa, J. Lumin. 134, 244 (2013)CrossRefGoogle Scholar
  37. 37.
    S. Rada, E. Culea, J. Non-Cryst. Solids 357, 1724 (2011)CrossRefGoogle Scholar
  38. 38.
    J. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, New York, 1979), p. 159Google Scholar
  39. 39.
    N. Mott, E. Davis, Electronic Process in Non-crystalline Materials, 2nd edn. (Clarendon Press, Oxford, 1979), p. 289Google Scholar
  40. 40.
    S.M. Sze, Semiconductor Devices Physics and Technology, 3rd edn. (Wiley, Mississauga, 2007)Google Scholar
  41. 41.
    F. Urbach, Phys. Rev. 92, 1324 (1953)CrossRefGoogle Scholar
  42. 42.
    V. Dimitrov, S. Sakka, J. Appl. Phys. 79, 1736 (1996)CrossRefGoogle Scholar
  43. 43.
    P. Sharma, M. Vashistha, I.P. Jain, J. Optoelectron. Adv. Mater. 7, 2647 (2005)Google Scholar
  44. 44.
    J. Singh, K. Shimakawa, Advances in amorphous semiconductors, in Advances in Condensed Matter Science, vol. 5, ed. by D.D. Sarma, G. Kotliar, Y. Tokura (Taylor & Francis, London, 2003)Google Scholar
  45. 45.
    C. Feifei, D. Shixun, N. Qiuhua, X. Tiefeng, S. Xiang, W. Xunsi, J. Wuhan Uni. Technol. Mater. 24, 716 (2009)CrossRefGoogle Scholar
  46. 46.
    V. Dimitrov, T. Komatsu, J. Non-Cryst. Solids 249, 160 (1999)CrossRefGoogle Scholar
  47. 47.
    N. Ahlawat, S. Sanghi, A. Agarwal, R. Bala, J. Mol. Struct. 963, 82 (2010)CrossRefGoogle Scholar
  48. 48.
    A. Kumar, D.K. Rai, S.B. Rai, Solid State Commun. 117, 387 (2001)CrossRefGoogle Scholar
  49. 49.
    J. Kliava, I.S. Edelman, A.M. Potseluyko, E.A. Petrakovskaja, R. Berger, I. Bruckental, Y. Yeshurun, A.V. Malakhovskii, T.V. Zarubina, J. Phys.: Condens. Matter 15, 6671 (2003)Google Scholar
  50. 50.
    Y. Kondo, K. Tanaka, R. Ota, T. Fujii, Y. Ishikawa, Opt. Mater. 27, 1438 (2005)CrossRefGoogle Scholar
  51. 51.
    H.E. Dongbing, Y.U. Chunlei, C. Jimeng, L.I. Shunguang, H.U. Lili, J. Rare Earths 29, 48 (2011)CrossRefGoogle Scholar
  52. 52.
    A. Strasser, A. Vogler, Inorg. Chim. Acta 357, 2345 (2004)CrossRefGoogle Scholar
  53. 53.
    A. Vogler, H. Kunkely, Inorg. Chim. Acta 359, 4130 (2006)CrossRefGoogle Scholar
  54. 54.
    H. Kunkely, V. Pawlowski, A. Strasser, A. Vogler, Inorg. Chem. Commun. 11, 415 (2008)CrossRefGoogle Scholar
  55. 55.
    X. Qu, L. Cao, W. Liu, G. Su, P. Wang, I. Schultz, Mater. Res. Bull. 47, 1598 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • S. M. Abo-Naf
    • 1
  • S. A. M. Abdel-Hameed
    • 1
  • M. A. Marzouk
    • 1
  • R. L. Elwan
    • 1
  1. 1.Glass Research DepartmentNational Research Centre (NRC)CairoEgypt

Personalised recommendations