A simple solid-state approach for synthesis and characterization of CdO–ZrO2–CdZrO3 nanocomposites

  • Maryam Masjedi-Arani
  • Masoud Salavati-Niasari


CdO–CdZrO3–ZrO2 nanocomposites, with the aid of Cd(C2O4)·3H2O and Zr(C2O4)·4H2O as starting reagents, have been successfully synthesized by a simple solid-state process from ethanol solution. Besides, the effects of preparation parameters such as calcination temperature and molar ratio of Zr:Cd on the morphology and particle size of products were studied. The prepared CdO–CdZrO3–ZrO2 nanostructures were characterized extensively by means of X-ray diffraction, energy-dispersive X-ray analysis, scanning electron microscopy, transmission electron microscopy, infrared spectrum and UV–Vis diffuse absorption spectroscopy. The photocatalytic activity of CdO–CdZrO3–ZrO2 nanostructure was evaluated by degradation of methyl orange in aqueous solution under UV-light irradiation.


Oxalate Photocatalytic Activity Calcination Temperature Methyl Orange Ag2S 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors are grateful to the council of Iran National Science Foundation and University of Kashan for supporting this work by Grant No. (159271/).


  1. 1.
    C.C. Chen, A.B. Herhold, C.S. Johnson, A.P. Alivisatos, Science 276, 398 (1997)CrossRefGoogle Scholar
  2. 2.
    T. Lu, L. Pan, H. Li, G. Zhu, T. Lv, X. Liu, J. Alloys Compd. 509, 5488 (2011)CrossRefGoogle Scholar
  3. 3.
    M. Mousavi-Kamazani, M. Salavati-Niasari, Compos. Part B 56, 490 (2014)CrossRefGoogle Scholar
  4. 4.
    G. Wang, Y.Q. Ma, Z.Y. Liu, J.N. Wu, Electrochim. Acta 65, 275 (2012)CrossRefGoogle Scholar
  5. 5.
    S.S. Barkade, J.B. Naik, S.H. Sonawane, Colloids Surf. A 378, 94 (2011)CrossRefGoogle Scholar
  6. 6.
    M. Ortega, G. Santana, A. Morales-Acevedo, Solid State Electron. 44, 1765 (2000)CrossRefGoogle Scholar
  7. 7.
    Q. Chang, C. Chang, X. Zhang, H. Ye, G. Shi, W. Zhang, Y. Wang, X. Xin, Y. Song, Opt. Commun. 274, 201 (2007)CrossRefGoogle Scholar
  8. 8.
    D.R. Modeshia, R.I. Walton, Chem. Soc. Rev. 39, 4303 (2010)CrossRefGoogle Scholar
  9. 9.
    C.D. Chandler, C. Roger, M.J. Hampden-Smith, Chem. Rev. 93, 1205 (1993)CrossRefGoogle Scholar
  10. 10.
    R. Robert, M.H. Aguirre, P. Hug, A. Reller, A. Weidenkaff, Acta Mater. 55, 4965 (2007)CrossRefGoogle Scholar
  11. 11.
    M. Nandia, K. Sarkara, M. Seikhc, A. Bhaumik, Microporous Mesoporous Mater. 143, 392 (2011)CrossRefGoogle Scholar
  12. 12.
    H. Aono, E. Traversa, M. Sakamoto, Y. Sadaoka, Sens. Actuators B 94, 132 (2003)CrossRefGoogle Scholar
  13. 13.
    T. Sanaeishoar, H. Tavakkoli, F. Mohave, Appl. Catal. A 470, 56 (2014)CrossRefGoogle Scholar
  14. 14.
    Z. Wang, C. Wang, S. Chen, Y. Liu, Int. J. Hydrog. Energy 39, 5644 (2014)CrossRefGoogle Scholar
  15. 15.
    M. Yazdanbakhsh, H. Tavakkoli, S.M. Hosseini, Desalination 281, 388 (2011)CrossRefGoogle Scholar
  16. 16.
    H. Tavakkoli, M. Yazdanbakhsh, Microporous Mesoporous Mater. 176, 86 (2013)CrossRefGoogle Scholar
  17. 17.
    A.V. Salker, N.J. Choi, J.H. Kwak, B.S. Joo, D.D. Lee, Sens. Actuators B 106, 461 (2005)CrossRefGoogle Scholar
  18. 18.
    L.Y. Yang, G.P. Feng, T.X. Wang, J.M. Zhang, T.J. Lou, Mater. Lett. 65, 2601 (2011)CrossRefGoogle Scholar
  19. 19.
    Z.G. Lu, Y.G. Tang, L.M. Chen, Y.D. Li, J. Cryst. Growth 266, 539 (2004)CrossRefGoogle Scholar
  20. 20.
    M. Niederberger, N. Pinna, J. Polleux, M. Antonietti, Angew. Chem. Int. Ed. 43, 2270 (2004)CrossRefGoogle Scholar
  21. 21.
    C. Karunakaran, A. Vijayabalan, Mater. Sci. Semicond. Process. 16, 1992 (2013)CrossRefGoogle Scholar
  22. 22.
    S. Al-Qaradawi, S.R. Salman, J. Photochem. Photobiol. A 148, 161 (2002)CrossRefGoogle Scholar
  23. 23.
    M. Salavati-Niasari, F. Davar, J. Alloys Compd. 509, 2487 (2011)CrossRefGoogle Scholar
  24. 24.
    M. Salavati-Niasari, N. Mir, F. Davar, J. Alloys Compd. 476, 908 (2009)CrossRefGoogle Scholar
  25. 25.
    J. Liu, Y. Wang, D. Sun, J. Renew. Energy 38, 214 (2012)CrossRefGoogle Scholar
  26. 26.
    K. Kaviyarasu, D. Sajan, M.S. Selvakumar, S. Augustine Thomas, D. Prem Anand, J. Phys. Chem. Solids 73, 1396 (2012)CrossRefGoogle Scholar
  27. 27.
    M. Masjedi, N. Mir, E. Noori, T. Gholami, M. Salavati-Niasari, Superlattices Microstruct. 62, 30 (2013)CrossRefGoogle Scholar
  28. 28.
    J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi B 15, 627 (1966)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Nano Science and Nano TechnologyUniversity of KashanKashanIslamic Republic of Iran

Personalised recommendations