Skip to main content
Log in

Role of Co on microstructure, crystallization behavior and soft magnetic properties of (Fe1−xCox)84Si4B8P3Cu1 nanocrystalline alloys

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, we describe the effects of substituting Co for Fe on the microstructure, crystallisation behaviour, and soft magnetic properties of (Fe1−x Co x )84Si4B8P3Cu1 (x = 0.35, 0.5, 0.65) alloys. The results demonstrate that as the Co content in the alloy increases, the heat treatment temperature also improves. When x = 0.35 Co was substituted for Fe in Fe84Si4B8P3Cu1 alloy, there was a significant enhancement in the interval temperature (ΔT x ) between the two crystallization temperatures, and this resulted in the largest crystalline volume fraction (V cry ). When annealing at 625–800 K, we observed a dual-phase nanocrystalline structure in all the specimens, which was composed of nanocrystals with average grain size of about 9–28 nm embedded in the residual amorphous matrix. The (Fe0.65Co0.35)84Si4B8P3Cu1 nanocrystalline alloy exhibited a high saturation magnetic flux density, B s , of 1.68 T; a low coercivity, H c , of 5.4 A/m; and a high effective permeability, µ e , of 29,600 at 1 kHz. Hence, these results indicate that this alloy is promising for use as a soft magnetic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V. Cremaschi, G. Sánchez, H. Sirkin, Phys. Rev. B Condens. Matter 354, 213 (2004)

    Article  Google Scholar 

  2. K. Suzuki, A. Makino, A. Inoue, T. Masumoto, J. Appl. Phys. 70, 6232 (1991)

    Article  Google Scholar 

  3. A. Makino, T. Bitoh, A. Inoue, T. Masumoto, Scr. Mater. 48, 869 (2003)

    Article  Google Scholar 

  4. M.E. McHenry, F. Johnson, H. Okumura, T. Ohkubo, V.R.V. Ramanan, D.E. Laughlin, Scr. Mater. 48, 881 (2003)

    Article  Google Scholar 

  5. R. Xiang, S.X. Zhou, B.S. Dong, G.Q. Zhang, Z.Z. Li, Y.G. Wang, J. Mater. Sci. Mater. Electron. 25, 2979 (2014)

    Article  Google Scholar 

  6. Y.M. Chen, T. Ohkubo, M. Ohta, Y. Yoshizawa, K. Hono, Acta Mater. 57, 4463 (2009)

    Article  Google Scholar 

  7. A. Makino, H. Men, T. Kubota, K. Yubuta, A. Inoue, J. Appl. Phys. 105, 07A308 (2009)

    Google Scholar 

  8. Y. Yoshizawa, S. Oguma, K. Yamauchi, J. Appl. Phys. 64, 6044 (1988)

    Article  Google Scholar 

  9. X. Xi, L. Li, B. Zhang, W. Wang, Y. Wu, Phys. Rev. Lett. 99, 095501 (2007)

    Article  Google Scholar 

  10. Z.-P. Wen, Z. Wang, R.-M. Shi, J. Wang, H. Zhang, J. Appl. Phys. 113, 17A320 (2013)

    Google Scholar 

  11. S.X. Zhou, B.S. Dong, J.Y. Qin, D.R. Li, S.P. Pan, X.F. Bian, Z.B. Li, J. Appl. Phys. 112, 023514 (2012)

    Article  Google Scholar 

  12. P. Pawlik, K. Pawlik, H.A. Davies, J.J. Wysłocki, W. Kaszuwara, M. Leonowicz, J. Magn. Magn. Mater. 304, e733 (2006)

    Article  Google Scholar 

  13. B. Dong, S. Zhou, M. Hu, F. Kong, W. Chen, B. Shen, Sci. China Technol. Sci. 53, 1590 (2010)

    Article  Google Scholar 

  14. V. Chunchu, G. Markandeyulu, J. Appl. Phys. 113, 17A321 (2013)

    Article  Google Scholar 

  15. X. Mao, Z. Han, F. Xu, W. Gao, B. Gu, Y. Du, Appl. Phys. A 81, 839 (2005)

    Article  Google Scholar 

  16. A. Gavrilovic, L.D. Rafailovic, D.M. Minic, J. Wosik, P. Angerer, D.M. Minic, J. Alloys Compd. 509s, s119 (2011)

    Article  Google Scholar 

  17. C. Miguel, A.P. Zhukov, J. Gonzalez, J. Non-Cryst. Solids 287, 355 (2001)

    Article  Google Scholar 

  18. A. Makino, Magn. Trans. IEEE 48, 1331 (2012)

    Article  Google Scholar 

  19. A. Urata, M. Yamaki, M. Takahashi, K. Okamoto, H. Matsumoto, S. Yoshida, A. Makino, J. Appl. Phys. 111(1–3), 07A335 (2012)

    Google Scholar 

  20. S.H. Lim, W.K. Pi, T.H. Noh, H.J. Kim, I.K. Kang, J. Appl. Phys. 73, 6591 (1993)

    Article  Google Scholar 

  21. M. Calvo-Dahlborg, U. Dahlborg, F. Haussler, E.D. Tabachnikova, V.Z. Bengus, Appl. Phys. A 74, s1131 (2002)

    Article  Google Scholar 

  22. X.Y. Zhang, F.X. Zhang, J.W. Zhang, W. Yu, M. Zhang, J.H. Zhao, R.P. Liu, Y.F. Xu, W.K. Wang, J. Appl. Phys. 84, 1918 (1998)

    Article  Google Scholar 

  23. A. Hernando, I. Navarro, P. Gorria, Phys. Rev. B 51, 3281 (1995)

    Article  Google Scholar 

  24. H. Kissinger, Anal. Chem. 29, 1702 (1957)

    Article  Google Scholar 

  25. F.L. Kong, H. Men, B.L. Shen, G.Q. Xie, Magn. Trans. IEEE 47, 3180 (2011)

    Article  Google Scholar 

  26. G. Herzer, IEEE Trans. Magn. 26(5), 1397 (1990)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant 51341002, by the Science and Technology Program of Beijing under Grant Z141100003814007, and by the National Scientific and Technological Support Projects under Grant 2013BAE08B01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. X. Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, R., Zhou, S.X., Dong, B.S. et al. Role of Co on microstructure, crystallization behavior and soft magnetic properties of (Fe1−xCox)84Si4B8P3Cu1 nanocrystalline alloys. J Mater Sci: Mater Electron 26, 2076–2081 (2015). https://doi.org/10.1007/s10854-014-2650-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2650-3

Keywords

Navigation