Role of Co on microstructure, crystallization behavior and soft magnetic properties of (Fe1−xCox)84Si4B8P3Cu1 nanocrystalline alloys

  • R. Xiang
  • S. X. Zhou
  • B. S. Dong
  • G. Q. Zhang
  • Z. Z. Li
  • Y. G. Wang


In this paper, we describe the effects of substituting Co for Fe on the microstructure, crystallisation behaviour, and soft magnetic properties of (Fe1−x Co x )84Si4B8P3Cu1 (x = 0.35, 0.5, 0.65) alloys. The results demonstrate that as the Co content in the alloy increases, the heat treatment temperature also improves. When x = 0.35 Co was substituted for Fe in Fe84Si4B8P3Cu1 alloy, there was a significant enhancement in the interval temperature (ΔT x ) between the two crystallization temperatures, and this resulted in the largest crystalline volume fraction (V cry ). When annealing at 625–800 K, we observed a dual-phase nanocrystalline structure in all the specimens, which was composed of nanocrystals with average grain size of about 9–28 nm embedded in the residual amorphous matrix. The (Fe0.65Co0.35)84Si4B8P3Cu1 nanocrystalline alloy exhibited a high saturation magnetic flux density, B s , of 1.68 T; a low coercivity, H c , of 5.4 A/m; and a high effective permeability, µ e , of 29,600 at 1 kHz. Hence, these results indicate that this alloy is promising for use as a soft magnetic material.


Heat Treatment Temperature Effective Permeability Soft Magnetic Property Nanocrystalline Alloy High Saturation Magnetisation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China under Grant 51341002, by the Science and Technology Program of Beijing under Grant Z141100003814007, and by the National Scientific and Technological Support Projects under Grant 2013BAE08B01.


  1. 1.
    V. Cremaschi, G. Sánchez, H. Sirkin, Phys. Rev. B Condens. Matter 354, 213 (2004)CrossRefGoogle Scholar
  2. 2.
    K. Suzuki, A. Makino, A. Inoue, T. Masumoto, J. Appl. Phys. 70, 6232 (1991)CrossRefGoogle Scholar
  3. 3.
    A. Makino, T. Bitoh, A. Inoue, T. Masumoto, Scr. Mater. 48, 869 (2003)CrossRefGoogle Scholar
  4. 4.
    M.E. McHenry, F. Johnson, H. Okumura, T. Ohkubo, V.R.V. Ramanan, D.E. Laughlin, Scr. Mater. 48, 881 (2003)CrossRefGoogle Scholar
  5. 5.
    R. Xiang, S.X. Zhou, B.S. Dong, G.Q. Zhang, Z.Z. Li, Y.G. Wang, J. Mater. Sci. Mater. Electron. 25, 2979 (2014)CrossRefGoogle Scholar
  6. 6.
    Y.M. Chen, T. Ohkubo, M. Ohta, Y. Yoshizawa, K. Hono, Acta Mater. 57, 4463 (2009)CrossRefGoogle Scholar
  7. 7.
    A. Makino, H. Men, T. Kubota, K. Yubuta, A. Inoue, J. Appl. Phys. 105, 07A308 (2009)Google Scholar
  8. 8.
    Y. Yoshizawa, S. Oguma, K. Yamauchi, J. Appl. Phys. 64, 6044 (1988)CrossRefGoogle Scholar
  9. 9.
    X. Xi, L. Li, B. Zhang, W. Wang, Y. Wu, Phys. Rev. Lett. 99, 095501 (2007)CrossRefGoogle Scholar
  10. 10.
    Z.-P. Wen, Z. Wang, R.-M. Shi, J. Wang, H. Zhang, J. Appl. Phys. 113, 17A320 (2013)Google Scholar
  11. 11.
    S.X. Zhou, B.S. Dong, J.Y. Qin, D.R. Li, S.P. Pan, X.F. Bian, Z.B. Li, J. Appl. Phys. 112, 023514 (2012)CrossRefGoogle Scholar
  12. 12.
    P. Pawlik, K. Pawlik, H.A. Davies, J.J. Wysłocki, W. Kaszuwara, M. Leonowicz, J. Magn. Magn. Mater. 304, e733 (2006)CrossRefGoogle Scholar
  13. 13.
    B. Dong, S. Zhou, M. Hu, F. Kong, W. Chen, B. Shen, Sci. China Technol. Sci. 53, 1590 (2010)CrossRefGoogle Scholar
  14. 14.
    V. Chunchu, G. Markandeyulu, J. Appl. Phys. 113, 17A321 (2013)CrossRefGoogle Scholar
  15. 15.
    X. Mao, Z. Han, F. Xu, W. Gao, B. Gu, Y. Du, Appl. Phys. A 81, 839 (2005)CrossRefGoogle Scholar
  16. 16.
    A. Gavrilovic, L.D. Rafailovic, D.M. Minic, J. Wosik, P. Angerer, D.M. Minic, J. Alloys Compd. 509s, s119 (2011)CrossRefGoogle Scholar
  17. 17.
    C. Miguel, A.P. Zhukov, J. Gonzalez, J. Non-Cryst. Solids 287, 355 (2001)CrossRefGoogle Scholar
  18. 18.
    A. Makino, Magn. Trans. IEEE 48, 1331 (2012)CrossRefGoogle Scholar
  19. 19.
    A. Urata, M. Yamaki, M. Takahashi, K. Okamoto, H. Matsumoto, S. Yoshida, A. Makino, J. Appl. Phys. 111(1–3), 07A335 (2012)Google Scholar
  20. 20.
    S.H. Lim, W.K. Pi, T.H. Noh, H.J. Kim, I.K. Kang, J. Appl. Phys. 73, 6591 (1993)CrossRefGoogle Scholar
  21. 21.
    M. Calvo-Dahlborg, U. Dahlborg, F. Haussler, E.D. Tabachnikova, V.Z. Bengus, Appl. Phys. A 74, s1131 (2002)CrossRefGoogle Scholar
  22. 22.
    X.Y. Zhang, F.X. Zhang, J.W. Zhang, W. Yu, M. Zhang, J.H. Zhao, R.P. Liu, Y.F. Xu, W.K. Wang, J. Appl. Phys. 84, 1918 (1998)CrossRefGoogle Scholar
  23. 23.
    A. Hernando, I. Navarro, P. Gorria, Phys. Rev. B 51, 3281 (1995)CrossRefGoogle Scholar
  24. 24.
    H. Kissinger, Anal. Chem. 29, 1702 (1957)CrossRefGoogle Scholar
  25. 25.
    F.L. Kong, H. Men, B.L. Shen, G.Q. Xie, Magn. Trans. IEEE 47, 3180 (2011)CrossRefGoogle Scholar
  26. 26.
    G. Herzer, IEEE Trans. Magn. 26(5), 1397 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • R. Xiang
    • 1
  • S. X. Zhou
    • 1
  • B. S. Dong
    • 1
  • G. Q. Zhang
    • 1
  • Z. Z. Li
    • 1
  • Y. G. Wang
    • 2
  1. 1.Advanced Technology & Materials Co., Ltd., China Iron & Steel Research Institute GroupBeijingChina
  2. 2.Institute of PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations