The effect of MWCNTs on the microwave electromagnetic properties of ferrite–MWCNTs composites



BaZn1.2Co0.8Fe16O27 ferrites were synthesized by a combined citrate–EDTA complexing method, and then the ferrites were mixed with multi-walled carbon nanotubes (MWCNTs) to prepare microwave absorbing composites. The morphology of ferrites and MWCNTs were observed using SEM. The microwave electromagnetic properties of ferrite–MWCNTs composites have been measured by a network analyzer (Agilent 8722ET) in the frequency range of 2–18 GHz. The theoretical reflection loss (RL) values of the composites were obtained according to the transmission line theory. In this work, the ferrite–5 wt% MWCNTs composite obtained a thinner matching thickness of 0.8 mm, with a RL maximum of −10 dB and absorption band (less than −5 dB) from 7 to 15 GHz, being promising microwave absorbing material.


Ferrite Complex Permittivity Reflection Loss Magnetic Loss Complex Permeability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by the National Natural Science Foundation (51202111), and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).


  1. 1.
    S.R. Jigajeni, M.M. Sutar, S.M. Salunkhe, P.B. Joshi, J. Mater. Sci. Mater. Electron. 23, 1678 (2012). doi: 10.1007/s10854-012-0646-4 CrossRefGoogle Scholar
  2. 2.
    G.R. Gordani, A. Ghasemi, A. Saidi, J. Magn. Magn. Mater. 363, 49–54 (2014). doi: 10.1016/j.jmmm.2014.03.068 CrossRefGoogle Scholar
  3. 3.
    X.G. Huang, J. Zhang, S.R. Xiao, G.S. Chen, J. Am. Ceram. Soc. 97(5), 1363–1366 (2014). doi: 10.1111/jace.12909 CrossRefGoogle Scholar
  4. 4.
    S. Sharma, V. Singh, R.K. Kotnala, R.K. Dwivedi, J. Mater. Sci. Mater. Electron. 25, 1915 (2014). doi: 10.1007/s10854-014-1820-7 CrossRefGoogle Scholar
  5. 5.
    A.L. Xia, S.K. Liu, C.G. Jin, S.B. Su, J. Mater. Sci. Mater. Electron. 23, 4166 (2013). doi: 10.1007/s10854-013-1377-x CrossRefGoogle Scholar
  6. 6.
    X.G. Huang, J. Zhang, S.R. Xiao, T.Y. Sang, G.S. Chen, Mater. Lett. 124, 126–128 (2014). doi: 10.1016/j.matlet.2014.03.049 CrossRefGoogle Scholar
  7. 7.
    D. Micheli, A. Vricella, R. Pastore, M. Marchetti, Carbon 77, 756–774 (2014). doi: 10.1016/j.carbon.2014.05.080 CrossRefGoogle Scholar
  8. 8.
    J. Zhang, L.X. Wang, M.P. Liang, Q.T. Zhang, T. Nonferr. Metal. Soc. 24(1), 131–135 (2014). doi: 10.1016/S1003-6326(14)63038-7 CrossRefGoogle Scholar
  9. 9.
    Q.C. Ling, J.Z. Sun, Q. Zhao, Q.Y. Zhou, Mater. Sci. Eng. B 162(3), 162–166 (2009). doi: 10.1016/j.mseb.2009.03.023 CrossRefGoogle Scholar
  10. 10.
    D.A. Makeiff, T. Huber, Synth. Met. 156, 497–505 (2006). doi: 10.1016/j.synthmet.2005.05.019 CrossRefGoogle Scholar
  11. 11.
    E.J. Vanzura, J.R. Baker-jarvis, J.H. Grosvenor, IEEE Trans. Microw. Theory Tech. 42(11), 2063–2069 (1994). doi: 10.1109/22.330120 CrossRefGoogle Scholar
  12. 12.
    A. Paul, S. Thomas, J. Appl. Polym. Sci. 63, 247–266 (1997). doi: 10.1002/(SICI)1097-4628(19970110 CrossRefGoogle Scholar
  13. 13.
    K.S. Moon, H.D. Cho, A.K. Lee, K.Y. Cho, H.G. Yoon, K.S. Suh, J. Appl. Polym. Sci. 77, 1294–1302 (2000). doi: 10.1002/1097-4628(20000808)77:6<1294:AID-APP14>3.0.CO;2-E CrossRefGoogle Scholar
  14. 14.
    S. Sugimoto, S. Kondo, K. Okayama, H. Nakamura, IEEE Trans. Magn. 35(5), 3154–3160 (1999). doi: 10.1109/20.801112 CrossRefGoogle Scholar
  15. 15.
    T. Maeda, S. Sugimoto, T. Kagotani, N. Tezuka, K. Inomata, J. Magn. Magn. Mater. 281, 195–205 (2004). doi: 10.1016/j.jmmm.2004.04.105 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringNanjing Tech UniversityNanjingChina

Personalised recommendations