Effect of BaZrO3/Ag hybrid doping to the microstructure and performance of fluorine-free MOD method derived YBa2Cu3O7−x superconducting thin films

  • X. Tang
  • Y. Zhao
  • W. Wu
  • J.-C. Grivel


It is known that BaZrO3 and Ag can improve the magnetic and transport performance of YBCO thin film through totally disparate ways. BaZrO3 plays the role of flux pinning centers and Ag improves the transparency of the YBCO grain boundaries. However, similar research is rare on the fluorine-free derived YBCO films. In this research, BaZrO3-doped, Ag-doped and BaZrO3/Ag hybrid-doped YBCO films were synthesized through a fluorine-free metal–organic deposition method. BaZrO3 was found to deteriorate the microstructure and performance of YBCO, while Ag-doping was found to enhance the crystallization of YBCO and resulted in a high Jc of 3.87 MA/cm2 in self-field at 77 K. However, the microstructure and performance of the BaZrO3/Ag hybrid-doped YBCO film showed that the positive impact of Ag-doping was totally overwhelmed by that of BaZrO3.


YBCO Film Chemical Solution Deposition YBCO Thin Film Peritectic Point Pure YBCO 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Danish Agency for Science Technology and Innovation (Project Nos. 09-062997 and 09-065234).


  1. 1.
    M. Kakihana, J. Sol-Gel Sci. Technol. 6, 7–55 (1996)CrossRefGoogle Scholar
  2. 2.
    K. Zalamova, A. Pomar, A. Palau, T. Puig, X. Obradors, Supercond. Sci. Technol. 23, 014012 (2010)CrossRefGoogle Scholar
  3. 3.
    P.C. McIntyre, M.J. Cima, J.A. Smith, R.B. Hallock, M.P. Siegal, J.M. Phillips, J. Appl. Phys. 71, 1868–1877 (1992)CrossRefGoogle Scholar
  4. 4.
    J.A. Smith, M.J. Cima, N. Sonnenberg, IEEE Trans. Appl. Supercond. 9, 1531–1534 (1999)CrossRefGoogle Scholar
  5. 5.
    B.A. Glowacki, M. Mosiadz, J. Sol-Gel Sci. Technol. 51, 335–347 (2009)CrossRefGoogle Scholar
  6. 6.
    Y.L. Xu, A. Goyal, J. Lian, N.A. Rutter, D.L. Shi, S. Sathyamurthy, M. Paranthaman, L. Wang, P.M. Martin, D.M. Kroeger, J. Am. Ceram. Soc. 87, 1669–1676 (2004)CrossRefGoogle Scholar
  7. 7.
    G. Risse, B. Schlobach, W. HaÈûler, D. Stephan, T. Fahr, K. Fischer, J. Eur. Ceram. Soc. 19, 125–130 (1999)CrossRefGoogle Scholar
  8. 8.
    A.J. Bubendorfer, T. Kemmitt, L.J. Campbell, N.J. Long, IEEE Trans. Appl. Supercond. 13, 2739–2742 (2003)CrossRefGoogle Scholar
  9. 9.
    L. Lei, G.Y. Zhao, J.J. Zhao, H. Xu, IEEE Trans. Appl. Supercond. 20, 2286–2293 (2010)CrossRefGoogle Scholar
  10. 10.
    P. Vermeir, J. Feys, J. Schaubroeck, K. Verbeken, M. Backer, I. Van Driessche, Mater. Chem. Phys. 133, 998–1002 (2012)CrossRefGoogle Scholar
  11. 11.
    S.R. Foltyn, L. Civale, J.L. Macmanus-Driscoll, Q.X. Jia, B. Maiorov, H. Wang, M. Maley, Nat. Mater. 6, 631–642 (2007)CrossRefGoogle Scholar
  12. 12.
    K. Matsumoto, P. Mele, Supercond. Sci. Technol. 23, 014001 (2010)CrossRefGoogle Scholar
  13. 13.
    A. Palau, E. Bartolomé, A. Llordés, T. Puig, X. Obradors, Supercond. Sci. Technol. 24, 125010 (2011)CrossRefGoogle Scholar
  14. 14.
    V. Rouco, E. Bartolomé, A. Palau, M. Coll, X. Obradors, T. Puig, Supercond. Sci. Technol. 25, 122001 (2012)CrossRefGoogle Scholar
  15. 15.
    I. Birlik, M. Erbe, T. Freudenberg, E. Celik, L. Schultz, B. Holzapfel, J. Phys. Conf. Ser. 234, 012004 (2010)CrossRefGoogle Scholar
  16. 16.
    D. Kumar, M. Sharon, R. Pinto, P.R. Apte, S.P. Pai, Appl. Phys. Lett. 62, 3522–3524 (1993)CrossRefGoogle Scholar
  17. 17.
    P. Selvam, E.W. Seibt, D. Kumar, R. Pinto, P.R. Apte, Appl. Phys. Lett. 71, 137–139 (1997)CrossRefGoogle Scholar
  18. 18.
    L.C. Pathak, S.K. Mishra, S. Srikanth, J. Mater. Res. 17, 895–900 (2002)CrossRefGoogle Scholar
  19. 19.
    E.M. Gyorgy, R.B. van Dover, K.A. Jackson, Appl. Phys. Lett. 55, 283–285 (1989)CrossRefGoogle Scholar
  20. 20.
    K. Konya, Y. Masuda, R. Teranishi, T. Kiss, S. Munetoh, K. Yamada, M. Yoshizumib, T. Izumi, Phys. Proc. 27, 212–215 (2012)CrossRefGoogle Scholar
  21. 21.
    S. Ghalsasi, G. Majkic, K. Salama, IEEE Trans. Appl. Supercond. 21, 3 (2011)CrossRefGoogle Scholar
  22. 22.
    M. Veith, S. Mathur, N. Lecerf, V. Huch, T. Decker, J. Sol-Gel Sci. Technol. 15, 145–158 (2000)CrossRefGoogle Scholar
  23. 23.
    P.-Y. Chu, R. Buchanan, J. Mater. Res. 8, 2134–2142 (1993)CrossRefGoogle Scholar
  24. 24.
    T.S. Orlova, B.I. Smirnov, J.Y. Laval, YuP Stepanov, Supercond. Sci. Technol. 12, 356–359 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Energy Conversion and StorageTechnical University of DenmarkRoskildeDenmark
  2. 2.Applied Superconductivity Research Center, Department of PhysicsTsinghua UniversityBeijingChina

Personalised recommendations