Advertisement

Single-crystalline rutile TiO2 nanorod arrays with high surface area for enhanced conversion efficiency in dye-sensitized solar cells

  • Tian Yuan
  • Hongbing Lu
  • Binghai Dong
  • Li Zhao
  • Li Wan
  • Shimin Wang
  • Zuxun Xu
Article

Abstract

Vertically ordered single-crystalline TiO2 nanorod arrays (NRAs) grown directly on transparent conductive substrates are of considerable interest for overcoming the limitations of current nanoparticle-based dye-sensitized solar cells (DSSCs) with the disordered network structure. However, the synthesis of such structures with high internal surface area is still challenging and desirable for highly efficient DSSCs. Herein, by introduction of a TiO2 nanocrystal seed layer, growth of long single-crystalline rutile TiO2 NRAs with high surface area has been demonstrated by a mild hydrothermal method combined with a chemical etching route. The chemical etching treatment developed here can effectively enlarge the surface area of rutile TiO2 NRAs for more dye-loading by splitting of original TiO2 nanorods into secondary nanowires with a reduced diameter. Accordingly, a DSSC constructed by 7 h-etched rutile TiO2 NRAs exhibits markedly enhanced efficiency of 4.69 %, compared to that of 1.30 % in the DSSCs based on un-etched TiO2 NRAs.

Keywords

TiO2 Rutile TiO2 Nanorods TiO2 NRAs Photoelectric Conversion Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (11105047). This work was also financially supported by the National Natural Science Foundation of China (51102087) and 973 Program (2010CB234606).

References

  1. 1.
    A. Yella, H.W. Lee, H.N. Tsao, C.Y. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Gratzel, Science 334, 629 (2011)CrossRefGoogle Scholar
  2. 2.
    H.W. Chen, C.P. Liang, H.S. Huang, J.G. Chen, R. Vittal, C.Y. Lin, K.C.W. Wu, K.C. Ho, Chem. Commun. 47, 8346 (2011)CrossRefGoogle Scholar
  3. 3.
    B. O’regan, M. Grätze, Nature 353, 737 (1991)CrossRefGoogle Scholar
  4. 4.
    O.K. Varghese, M. Paulose, C.A. Grimes, Nat. Nanotechnol. 4, 592 (2009)CrossRefGoogle Scholar
  5. 5.
    B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131, 3985 (2009)CrossRefGoogle Scholar
  6. 6.
    Y.P. Liu, S.R. Wang, Z.Q. Shan, X.G. Li, J.H. Tian, Y.M. Mei, H.M. Ma, K.L. Zhu, Electrochim. Acta 60, 422 (2012)CrossRefGoogle Scholar
  7. 7.
    J. Liang, G.M. Zhang, H.R. Xia, W.T. Sun, RSC Adv. 4, 12649 (2014)CrossRefGoogle Scholar
  8. 8.
    T.S. Eom, K.H. Kim, C.W. Bark, H.W. Choi, J. Nanosci. Nanotechnol. 14, 7705 (2014)CrossRefGoogle Scholar
  9. 9.
    G. Arthi, J. Archana, M. Navaneethan, S. Ponnusamy, Y. Hayakawa, C. Muthamizhchelvan, Scr. Mater. 68, 396 (2013)CrossRefGoogle Scholar
  10. 10.
    J. Navas, E. Guillen, R. Alcantara, C. Fernandez-Lorenzo, J. Martin-Calleja, G. Oskam, J. Idigoras, T. Berger, J.A. Anta, J. Phys. Chem. Lett. 2, 1045 (2011)CrossRefGoogle Scholar
  11. 11.
    X.J. Feng, K. Zhu, A.J. Frank, C.A. Grimes, T.E. Mallouk, Angew. Chem. Int. Edit. 51, 2727 (2012)CrossRefGoogle Scholar
  12. 12.
    Y.J. Hwang, C. Hahn, B. Liu, P.D. Yang, ACS Nano 6, 5060 (2012)CrossRefGoogle Scholar
  13. 13.
    H.E. Wang, Z.H. Chen, Y.H. Leung, C.Y. Luan, C.P. Liu, Y.B. Tang, C. Yan, W.J. Zhang, J.A. Zapien, I. Bello, Appl. Phys. Lett. 96, 263104 (2010)CrossRefGoogle Scholar
  14. 14.
    L. Zhao, J. Li, Y. Shi, S.M. Wang, J.H. Hu, B.H. Dong, H.B. Lu, P. Wang, J. Alloy. Compd. 575, 168 (2013)CrossRefGoogle Scholar
  15. 15.
    A. Kumar, A.R. Madaria, C.W. Zhou, J. Phys. Chem. C 114, 7787 (2010)CrossRefGoogle Scholar
  16. 16.
    X.G. Peng, L. Manna, W.D. Yang, E.S. Wickham, A. Kadavanich, A.P. Alivisatos, Nature 404, 59 (2000)CrossRefGoogle Scholar
  17. 17.
    M. Adachi, Y. Murata, J. Takao, J.T. Jiu, M. Sakamoto, F.M. Wang, J. Am. Chem. Soc. 126, 14943 (2004)CrossRefGoogle Scholar
  18. 18.
    A. Kumar, A.R. Madaria, C.W. Zhou, J. Phys. Chem. C 114, 7787 (2010)CrossRefGoogle Scholar
  19. 19.
    H. Cheng, J. Ma, Z. Zhao, L. Qi, Chem. Mater. 7, 663 (1995)CrossRefGoogle Scholar
  20. 20.
    S.L. Cheng, W.Y. Fu, B.Y. Hai, L.N. Zhang, J.W. Ma, H. Zhao, M.L. Sun, L.H. Yang, J. Phys. Chem. C 116, 2615 (2012)CrossRefGoogle Scholar
  21. 21.
    W.X. Guo, C. Xu, X. Wang, S.H. Wang, C.F. Pan, C.J. Lin, Z.L. Wang, J. Am. Chem. Soc. 134, 4437 (2012)CrossRefGoogle Scholar
  22. 22.
    Y.L. Xie, Z.X. Li, Z.G. Xu, H.L. Zhang, Electrochem. Commun. 13, 788 (2011)CrossRefGoogle Scholar
  23. 23.
    G.D. Rajmohan, X.J. Dai, T. Tsuzuki, P.R. Lamb, J. Du Plessis, F.Z. Huang, Y.B. Cheng, Thin Solid Films 545, 521 (2013)CrossRefGoogle Scholar
  24. 24.
    N.E. Motl, A.F. Smith, C.J. DeSantis, S.E. Skrabalak, Chem. Soc. Rev. 43, 3823 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and EngineeringHubei UniversityWuhanPeople’s Republic of China
  2. 2.School of Physics and Information TechnologyShaanxi Normal UniversityXi’anPeople’s Republic of China

Personalised recommendations