Study of dielectric and impedance spectroscopy of La substituted nanocrystalline Pb(Zr0.52Ti0.48)O3 ceramics

  • P. Kour
  • Pawan Kumar
  • S. K. Sinha
  • Manoranjan Kar


Nanocrystalline Pb1−xLaxZr0.52Ti0.48O3 ceramics with x = 0.00, 0.02, 0.04, 0.06 and 0.1 were prepared by the sol gel method. X-ray diffraction analysis of the calcined powder at room temperature shows mixed rhombohedral and tetragonal crystal structure. The grain size increases with the increase in lanthanum concentration. Dielectric properties of the samples were studied as a function of frequency and temperature. The Curie temperature decreases and dielectric constant increases with the increase in La3+ concentration. The frequency dependent ac conductivity follows Jonscher power law. The detailed study of relaxation process and microstructure effect has been carried out by impedance spectroscopy. The Nyquist plot shows two semicircles ascribed to the grain and grain boundary effect in La3+ substituted PZT ceramics. A non-Debye type relaxation was observed in all the samples.


Lanthanum Concentration Lanthanum Acetate Lead Vacancy P4mm Space Group High Frequency Dipole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M.E. Lines, A.M. Glass, Principle and Application of Ferroelectrics and Related Materials (Clarndon Press, Oxford, 1977)Google Scholar
  2. 2.
    G.H. Haertling, J. Am. Soc. 82(4), 797 (1999)Google Scholar
  3. 3.
    V. Koval, C. Alemany, J. Briancin, H. Brunckova, J. Electroceram. 10, 19 (2003)CrossRefGoogle Scholar
  4. 4.
    S.R. Shannigrahi, F.E.H. Taya, K. Yaoa, R.N.P. Choudhary, J. Eur. Ceram. Soc. 24, 163 (2004)CrossRefGoogle Scholar
  5. 5.
    D. Zhong-Xia, Y. Jie, Z. Quan-Liang, L. Hong-Mei, N. Hai-Bo, Z. Wen-Tong, C. Mao-Sheng, Chin. Phys. Lett. 25, 1472 (2008)CrossRefGoogle Scholar
  6. 6.
    B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic press, London, 1971)Google Scholar
  7. 7.
    B. Noheda, L. Wu, Y. Zhu, Phys. Rev. B 66, 060103 (2002)CrossRefGoogle Scholar
  8. 8.
    E.D. Ion, B. Malic, M. Kosec, J. Eur. Cerem. Soc. 27, 4349 (2007)CrossRefGoogle Scholar
  9. 9.
    K. Raju, P. Venugopal, Reddy. Curr. Appl. Phys. 10, 31 (2010)CrossRefGoogle Scholar
  10. 10.
    B. Nohedal, D.E. Cox, G. Shirane, J.A. Gonzalo, L.E. Cross, S.E. Park, Appl. Phys. Lett. 74, 2059 (1999)CrossRefGoogle Scholar
  11. 11.
    R.P. Tandon, V. Singh, J. Mat. Sci. Lett. 13, 810 (1994)CrossRefGoogle Scholar
  12. 12.
    C. Li, M. Liu, Y. Zeng, D. Yu, Sens. Actuator A 58, 245 (1997)CrossRefGoogle Scholar
  13. 13.
    Y. Zhao, Y. Zhang, X. Wang, J. Mater. Sci. Mater. Electron. 24, 2240 (2013)CrossRefGoogle Scholar
  14. 14.
    A.R. James, J. Subrahmanyam, J. Mater. Sci. Mater. Electron. 17, 529 (2006)CrossRefGoogle Scholar
  15. 15.
    G. Ajai, T.C. Goel, J. Mater. Sci. Mater. Electron. 11, 225 (2000)CrossRefGoogle Scholar
  16. 16.
    S.C. Panigrahi, P.R. Das, B.N. Parida, H.B.K. Sharma, R.N.P. Chaudhary, J. Mater. Sci. Mater. Electron. 24, 3275 (2013)CrossRefGoogle Scholar
  17. 17.
    Y. Zhang, Y. Zhang, X. Xue, C. Cui, B. He, Y. Nie, P. Deng, Z.L. Wang, Nanotechnology 25, 105401 (2014)CrossRefGoogle Scholar
  18. 18.
    B. Sahoo, V.A. Jaleel, P.K. Panda, Mater. Sci. Eng. B 126, 80 (2006)CrossRefGoogle Scholar
  19. 19.
    A. Boutarfafia, Ceram. Int. 26, 583 (2000)CrossRefGoogle Scholar
  20. 20.
    S.-G. Lee, C.-J. Kim, J. Korean Phys. Soc. 49, 216 (2006)Google Scholar
  21. 21.
    B.D. Culity, S.R. Stock, Elements of X-Ray Diffraction (Prentice-Hall, Englewood Cliffs, 2001)Google Scholar
  22. 22.
    G.K. Williamson, W.H. Hall, Acta Matllurgica 1, 22 (1953)CrossRefGoogle Scholar
  23. 23.
    V.M. Goldschmidth, Die Gesetze Der Krystallochemie and Naturwissenschaften 21, 477 (1926)CrossRefGoogle Scholar
  24. 24.
    S. Dutta, R.N.P. Choudhary, P.K. Sinha, A.K. Thakur, J. Appl. Phys. 96, 1607 (2004)CrossRefGoogle Scholar
  25. 25.
    M.D. Glinchuk, I.P. Byok, S.M. Kornienko, V.V. Laguta, A.M. Slipenyuk, A.G. Bilous, O.I. Vyunov, O.Z. Yanchevskii, J. Mat. Chem. 10, 941 (2000)CrossRefGoogle Scholar
  26. 26.
    A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983)Google Scholar
  27. 27.
    S. Saha, T.P. Sinha, Phys. Rev. B 65, 134103 (2002)CrossRefGoogle Scholar
  28. 28.
    C. Leon, A. Rivera, A. Varez, J. Sanz, J. Santamaria, K.L. Nagi, Phys. Rev. Lett. 86, 1279 (2001)CrossRefGoogle Scholar
  29. 29.
    K.L. Nagi, A.K. Jonscher, C.T. White, Nature 277, 185 (1979)CrossRefGoogle Scholar
  30. 30.
    K.S. Cole, R.H. Cole, J. Chem. Phys. 9, 341 (1941)CrossRefGoogle Scholar
  31. 31.
    N. Kumar, M. Kumari, R.S. Katiyar, J. Alloys Compd. 469, 433 (2009)CrossRefGoogle Scholar
  32. 32.
    R.N.P. Choudhary, D.K. Pradhan, C.M. Tiradio, G.E. Bonilla, R.S. Katiyar, Phys. B 393, 24 (2007)CrossRefGoogle Scholar
  33. 33.
    D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, J. Appl. Phys. 106, 102 (2009)CrossRefGoogle Scholar
  34. 34.
    M.J. Haun, E. Furman, S.J. Jang, L.E. Cross, Ferroelectrics 99, 13 (1989)CrossRefGoogle Scholar
  35. 35.
    I. Grinberg, V.R. Cooper, A.M. Rappe, Phys. Rev. B 69, 144118 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • P. Kour
    • 1
  • Pawan Kumar
    • 2
  • S. K. Sinha
    • 1
  • Manoranjan Kar
    • 2
  1. 1.Department of Applied PhysicsBIT MesraPatnaIndia
  2. 2.Department of PhysicsIndian Institute of Technology PatnaPatnaIndia

Personalised recommendations