Advertisement

La-doping content effect on the optical and electrical properties of La-doped ZnO thin films

  • H.-Y. He
  • J.-F. Huang
  • J. Fei
  • J. Lu
Article

Abstract

La-doped ZnO films with a series of La content were deposited by a chemical solution deposition and characterized by X-ray diffraction, field emission scanning electron microscopy, X-ray energy dispersion spectrometry, ultraviolet–visible and luminescent spectrophotometries, and electrical resistance measurement. The transmittance and electrical conductivity of the films increased and then decreased with increasing La content. The film with actual La content of 0.14 at.% showed a lowest optical absorbance, a widest bandgap of 4.08 eV, and a minimal resistance of 3.3 × 10−1 Ω cm. The films showed a strong near band gap emission and some weak emissions related to intrinsic defects, implying near perfect crystal structure. The refractive index, extinction coefficient, optical conductivity, dielectric constant of the films were calculated with the transmittance and reflectance spectra.

Keywords

Average Particle Size Optical Conductivity LaCl3 Energy Dispersion Spectrum Perfect Crystal Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D.L. Polla, R.S. Muller, R.M. White, Integrated multisensor chip. IEEE Electron Device Lett. 7, 254–256 (1996)CrossRefGoogle Scholar
  2. 2.
    W.J. BeekE, M.M. Wienk, R.A.J. Janssen, Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles. Adv. Funct. Mater. 16, 1112–1116 (2006)CrossRefGoogle Scholar
  3. 3.
    Z.-L. Wang, J.-H. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)CrossRefGoogle Scholar
  4. 4.
    J.-X. Wang, X.-W. Sun, Y. Yang, H. Huang, Y.C. Lee, O.-K. Tan, L. Vayssieres, Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications. Nanotechnology 17, 4995–4998 (2006)CrossRefGoogle Scholar
  5. 5.
    H.-Y. Liu, H. Kong, X.-M. Ma, W.-Z. Shi, Microstructure and electrical properties of ZnO-based varistors prepared by high-energy ball milling. J. Mater. Sci. 42, 2637–2642 (2007)CrossRefGoogle Scholar
  6. 6.
    G.A. Hirata, J. Mekittrik, T. Cheek, J.M. Siqueiros, J.A. Diaz, O. Contreras, O.A. Lopex, Synthesis and optelectronic characterization of gallium substituted zinc oxide transparent electrodes. Thin Solid Films 228, 29–31 (1996)CrossRefGoogle Scholar
  7. 7.
    P. Nunes, B. Fernandes, E. Fortunan, P. Vilarinlo, R. Martins, Performances presented by zinc oxide thin films deposited by spray pyrolysis. Thin Solid Films 337, 176–179 (1999)CrossRefGoogle Scholar
  8. 8.
    K.T.R. Reddy, R.W. Miles, Growth and characterization of sprayed ZnO: Ga thin films. J. Mater. Sci. Lett. 17, 279–281 (1998)CrossRefGoogle Scholar
  9. 9.
    S.-S. Lin, J.-L. Huanga, P. Sajgalik, The properties of Ti-substituted ZnO films deposited by simultaneous RF and DC magnetron sputtering. Surf. Coat. Technol. 191, 286–292 (2005)CrossRefGoogle Scholar
  10. 10.
    K.P. Misra, R.K. Shukla, A. Srivastava, A. Srivastava, Blueshift in optical band gap in nanocrystalline Zn1-xCaxO films deposited by sol–gel method. Appl. Phys. Lett. 95(3), 031901–031905 (2009)CrossRefGoogle Scholar
  11. 11.
    A.K. Das, P Misra and L.M Kukreja, Effect of Si doping on electrical and optical properties of ZnO thin films grown by sequential pulsed laser deposition. J. Phys. D Appl. Phys. 42, 165405–165411 (2009)CrossRefGoogle Scholar
  12. 12.
    T. Minami, T. Yamamoto, T. Miyata, Highly transparent and conductive rare earth-doped ZnO thin films prepared by magnetron sputtering. Thin Solid Films 366, 63–68 (2000)CrossRefGoogle Scholar
  13. 13.
    C.-G. Wu, J.-S.hen, J. Ma, S.-P. Wang, Z.-J. Zhang and X.-L. Yang, Electrical and optical properties of molybdenum-doped ZnO transparent conductive thin films prepared by dc reactive magnetron sputtering. Semicond. Sci. Technol. 24, 125012–125017 (2009)CrossRefGoogle Scholar
  14. 14.
    Y.-C. Lin, B.-L. Wang, W.-T. Yen, C.-T. Ha, C. Peng, Effect of process conditions on the optoelectronic characteristics of ZnO:Mo thinfilms prepared by pulsed direct current magnetron sputtering. Thin Solid Films 518, 4928–4934 (2010)CrossRefGoogle Scholar
  15. 15.
    Z.-B. Fang, Y.-S. Tan, H.-X. Gong, C.-M. Zhen, Z.-W. He, Y.-Y. Wang, Transparent conductive Tb-doped ZnO films prepared by rf reactive magnetron sputtering. Mater. Lett. 59, 2611–2614 (2005)CrossRefGoogle Scholar
  16. 16.
    V. Kumari, V. Kumar, B.P. Malik, R.M. Mehra, D. Mohan, Nonlinear optical properties of erbium doped zinc oxide (EZO) thin films. Opt. Commun. 285, 2182–2188 (2012)CrossRefGoogle Scholar
  17. 17.
    J.L. Chen, D. Chen, J.J. He, S.Y. Zhang, Z.H. Chen, The microstructure, optical, and electrical properties of sol–gel-derived Sc-doped and Al–Sc co-doped ZnO thin films. Appl. Surf. Sci. 255, 9413–9419 (2009)CrossRefGoogle Scholar
  18. 18.
    H.M. Pathan, J.D. Desai, C.D. Lokhande, Modified chemical deposition and physico-chemical properties of copper sulphide (Cu2S) thin films. Appl. Surf. Sci. 202, 47 (2002)CrossRefGoogle Scholar
  19. 19.
    M.H. Mamat, M.Z. Sahdan, Z. Khusaimi, A. Zain, Ahmed, S. Abdullah, M. Rusop, Influence of doping concentrations on the aluminum doped zinc oxide thin films properties for ultraviolet photoconductive sensor applications. Opt. Mater. 32(6), 696–699 (2010)CrossRefGoogle Scholar
  20. 20.
    M.-S. Wang, K.E. Lee, S.H. Hahn, E.J. Kim, S. Kim, J.S. Chung, E.W. Shin, C. Park, Optical and photoluminescent properties of sol-gel Al-doped ZnO thin films. Mater. Lett. 61, 1118–1121 (2007)CrossRefGoogle Scholar
  21. 21.
    P.V. Korake, R.S. Dhabbe, A.N. Kadam, Y.B. Gaikwad, K.M. Garadkar, Highly active lanthanum doped ZnO nanorods for photodegradation of metasystox. J. Photochem. Photobiol. B Biol. 5(130), 11–19 (2014)CrossRefGoogle Scholar
  22. 22.
    S.H. Chaki, M.P. Deshpande, J.P. Tailor, Characterization of CuS nanocrystalline thin films synthesized by chemical bath deposition and dip coating techniques. Thin Solid Films 550, 291–297 (2014)CrossRefGoogle Scholar
  23. 23.
    M. Wraback, H. Shen, S. Liang, C.R. Gorla, Y. Lu, High contrast, ultrafast optically addressed ultraviolet light modulator based upon optical anisotropy in ZnO films grown on R-plane sapphire. Appl. Phys. Lett. 74, 507 (1999)CrossRefGoogle Scholar
  24. 24.
    D.M. Schaadt, O. Brandt, S. Ghosh, T. Flissikowski, U. Jahn, H.T. Grahn, Polarization-dependent beam switch based on an M-plane GaN/AlN distributed Bragg reflector. Appl. Phys. Lett. 90, 231117 (2007)CrossRefGoogle Scholar
  25. 25.
    X.-Y. Ma, Z. Wang, The optical properties of rare earth Gd doped ZnO nanocrystals. Mater. Sci. Semicond. Process. 15, 227 (2012)CrossRefGoogle Scholar
  26. 26.
    V. Rakhesh, M. Junaid Bushiri, V.K. Vaidyan, Visible luminescence centers in zinc oxide films deposited by spray pyrolysis. J. Optoelectron. Adv. Mater. 9, 3740 (2007)Google Scholar
  27. 27.
    P.-S. Xu, Y.-M. Sun, C.-S. Shi, F.-Q. Xu, H.-B. Pan, The electron structures of ZnO and its defects. Sci. Chin. A 31(4), 358–365 (2001)Google Scholar
  28. 28.
    S.K. Mishra, R.K. Srivastava, S.G. Prakash, R.S. Yadav, A.C. Pandey, Photo- luminescence and photoconductivity studies of ZnO nanoparticles prepared by solid state reaction method. Opt. Electron. Rev. 18, 467–473 (2010)Google Scholar
  29. 29.
    J.-L. Xu, S. Hao, X.-B. Duan, S. Gu, X.-W. Meng, Preparation and photoelectric properties of La-doped ZnO films. J. Mater. Sci. Mater. Electron 24, 4175–4179 (2013)CrossRefGoogle Scholar
  30. 30.
    J. Camassel, D. Auvergne, H. Mathieu, Temperature dependence of the band gap and comparison with the threshold frequency of pure GaAs lasers. J. Appl. Phys. 46, 2683–2689 (1975)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringShaanxi University of Science and TechnologyXi’anChina

Personalised recommendations