Skip to main content
Log in

Synthesis and optoelectronic properties of three Eu(III)-dipicolinate complexes based on α-picolinic acid, 2-aminopyridine and 2-hydroxypyridine as secondary ligands

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We synthesized some Eu(III) complexes {[Eu(dpa)(α-pc)(CH3OH)]·2CH3OH} (1), {[Eu(dpa)(2-ap)(CH3OH)]·2CH3OH}(2) and {[Eu(dpa)(2-hp)(CH3OH)]·2CH3OH}(3) [dpa = dipicolinic acid; α-pc = α-picolinic acid; 2-ap = 2-aminopyridine; 2-hp = 2-hydroxypyridine]. The structural characterization of the complexes were studied by elemental analysis, FTIR spectroscopy, SEM and powder X-ray diffraction studies (XRD) where the elemental analysis and FTIR results indicate the coordination of ligands with the Eu(III) ion. The X-ray diffraction patterns show the crystalline nature of complex (1) and amorphous nature of complexes (2) and (3) and the SEM micrographs also depict different morphologies of the complexes. The thermal properties of the synthesized complexes were studied by TG–DTA technique which indicates good thermal stability of the synthesized complexes. The optical properties were studied using Ultraviolet visible spectroscopy (UV–Vis) and Photoluminescence studies (PL) where photoluminescence measurements indicate that all the three complexes exhibit the characteristic emission bands of Eu(III) ion corresponding to 5Do → 7FJ (J = 0–4) transitions and it has also been observed that the intensity of emission is influenced by the effect of different secondary ligands. The most intense transition and the long radiative lifetime, quantum efficiency of the 5Do excited level of Eu(III) ion observed for the complex (2) with 2-ap as secondary ligand reflects the good sensitizing ability of ligand 2-ap. The optical properties of the obtained complexes can be well utilized for preparation of rare earth luminescent materials and fluorescence probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.H. Xue, X.H. Hua, L.M. Yang, W.H. Li, Y.Z. Xu, G.Z. Zhao, G.H. Zhang, K.X. Liu, J.E. Chen, J.G. Wu, Synthesis, crystal structures and luminescence properties of europium and terbium picolinamide complexes. Chin. Chem. Lett. 25, 887–891 (2014)

  2. L. Meijuan, W. Xiaoping, T. Qiang, L. Qidan, Luminescence properties of polymers containing europium complexes with 4-tert-butylbenzoic acid. J. Rare Earths 31, 950–956 (2013)

    Article  Google Scholar 

  3. K.P. Zhuravlev, V.I. Tsaryuk, I.S. Pekareva, J. Sokolnicki, Z.S. Klemenkova, Europium and terbium ortho-, meta-, and para-methoxybenzoates: Structural peculiarities, luminescence, and energy transfer. J. Photochem. Photobiol. A 219(219), 139–147 (2011)

    Article  Google Scholar 

  4. M. Rasanen, H. Takalo, J. Rosenberg, J. Makela, K. Haapakka, J. Kankare, Study on photophysical properties of Eu(III) complexes with aromatic β-diketones—Role of charge transfer states in the energy migration. J. Lumin. 146, 211–217 (2014)

    Article  Google Scholar 

  5. M.G. Lahoud, L.F. Marques, P.B. Da Silva, C.A. De Jesus, C.C. Da Silva, J. Ellena, R.S. Freits, M.R. Davolos, C.G. Frem Regima, Synthesis, crystal structure and photoluminescence of a binuclear complex of europium(III) containing 3,5-dicarboxypyrazolate and succinate. Polyhedron 54(54), 1–7 (2013)

    Article  Google Scholar 

  6. G. Zucchi, O. Maury, P. Thurey, M. Ephritikhine, Structural diversity in Neodimium bipyrimidine compounds with near infrared luminescence: From mono and binuclear complexes to metal-organic frameworks. Inorg. Chem. 47, 10398–10406 (2008)

    Article  Google Scholar 

  7. L. Armelao, S. Quici, G.A. Barigelletti, G. Bottaro, M. Cavazzini, E. Tondello, Design of luminescent lanthanide complexes : From molecules to highly efficient photo-emitting materials. Coord. Chem. Rev. 254, 487–505 (2010)

    Article  Google Scholar 

  8. G.F. De Sa, O.L. Malta, C. de Mello Donega, A.M. Simas, R.L. Longo, P.A. Santacruz, E.F. Da Silva Jr., Spectroscopic properties and design of highly luminescent lanthanide coordination complexes. Coord. Chem. Rev. 196, 165–195 (2000)

    Article  Google Scholar 

  9. H.A. Azab, A. Duerko, Z.M. Anwar, B.H.M. Hussein, M.A. Rizk, Luminescence recognition of different organophosphorus pesticides by the luminescent Eu(III)-pyridine-2,6-dicarboxylic acid probe. Anal. Chim. Acta 759, 81–91 (2013)

    Article  Google Scholar 

  10. H. Zheng, D. Gao, F. Zhenxing, E. Wang, Y. Lei, Y. Tuan, M. Cui, Fluorescence enhancement of Ln3+ doped nanoparticles. J. Lumin. 131, 423–428 (2011)

    Article  Google Scholar 

  11. L. Zhang, Y. An, W. Ahmad, Y. Zhou, Z. Shi, X. Zheng, A new quarternary luminescence enhancement system of Eu-N-(3-methoxysalicylidene)-2-aminopyridine-1,10-phenanthroline-Zn and its application in determining trace amounts of Eu3+ and Zn2+. J. Photochem. Photobiol. A 252, 167–173 (2013)

    Article  Google Scholar 

  12. Z. Hnatejko, G. Dutkiewicz, M. Kubicki, S. Lis, New complexes of cobalt(II) ions with pyridine carboxylic acid N-oxides and 4,4′-byp. J. Mol. Struct. 1034, 128–133 (2013)

    Article  Google Scholar 

  13. G.X. Liu, Y.Y. Xu, X.M. Ren, S. Nishihara, R.Y. Huang, Self–assembly of 3d-4f coordination frameworks based on pyridine-3,5-dicarboxylic acid: Synthesis, crystal structuresand luminescence. Inorg. Chim. Acta 363, 3727–3732 (2010)

    Article  Google Scholar 

  14. R. Tang, Q. Zhao, Z.E. Yan, Y.M. Luo, Synthesis of novel derivatives of pyridine-2,6-dicarboxylic acid. Synth. Commun. 36, 2027–2034 (2006)

    Article  Google Scholar 

  15. Q. Yue, J. Yang, G.H. Li, G.D. Li, W. Xu, J.S. Chen, S.N. Wang, Three dimensional 3d-4f Heterometallic coordination polymers: Synthesis. Struct. Magn. Prop. Inorg. Chem. 44, 5241–5246 (2005)

    Article  Google Scholar 

  16. J.C.G. Bunzli, Lanthanide Luminescence for biomedical analyses and imaging. Chem. Rev. 110, 2729–2755 (2010)

    Article  Google Scholar 

  17. H. Tsukube, S. Shinoda, Lanthanide complexes in molecular recognition and chirality sensing of biological substrates. Chem. Rev. 102, 2389–2403 (2002)

    Article  Google Scholar 

  18. D.T. De Lill, D.A. Bettencourt, C.L. Cahill, Exploring Lanthanide luminescence in Metal-Organic Frameworks: Synthesis, Structure and Guest-Sensitized Luminescence of a mixed Europium/Terbium-Adipate Framework and a Terbium-Adipate Framework. Inorg. Chem. 46, 3960–3965 (2007)

    Article  Google Scholar 

  19. D. Ma, W. Wang, Y. Li, J. Li, C. Daiguebonne, G. Calvez, O. Guillou, In situ 2,5-pyrazinedicarboxylate and oxalate ligands synthesis leading to a microporous europium-organic framework capable of selective sensing of small molecules. Cryst. Eng. Comm. 12, 4372–4377 (2010)

    Article  Google Scholar 

  20. J. Huang, Y. Xu, X. Chen, D. Xu, Y. Xu, Q. He, Synthesis, characterization and properties of some rare earth complexes with 2,6-pyridine dicarboxylic acid and α-Picolinic acid. J. Rare Earths 30, 586–591 (2012)

    Article  Google Scholar 

  21. S. Mistri, E. Zangrando, S.C. Manna, Cu(II) complexes of pyridine-2,6-dicarboxylate and N-donor neutral ligands: Synthesis, crystal structure, thermal behavior, DFT calculation and effect of aromatic compounds on their fluorescence. Inorg. Chim. Acta 405, 331–338 (2013)

    Article  Google Scholar 

  22. S.P. Jose, S. Mohan, Vibrational spectra and normal co-ordinate analysis of 2-aminopyridine and 2-aminopicoline. Spectrochimica. Acta. Part A. 64, 240–245 (2006)

    Article  Google Scholar 

  23. D. Wang, Y. Pi, C. Zheng, L. Fan, Y. Hu, X. Wei, Preparation and photoluminescence of some europium (III) ternary complexes with β-diketone and nitrogen heterocyclic ligands. J. Alloy. Compd. 574, 54–58 (2013)

    Article  Google Scholar 

  24. R. Lyszczek, L. Mazur, Polynuclear complexes constructed by lanthanides and pyridine-3,5-dicarboxylate ligand: Structures, thermal and luminescent properties. Polyhedron 41, 7–19 (2012)

    Article  Google Scholar 

  25. M.E. Mesquita, S.S. Nobre, M. Fernandes, R.A.S. Ferreira, S.C.G. Santos, M.O. Rodrigues, L.D. Carlos, V. de Zea Bermudes, Highly luminescent di-ureasil hybrid doped with a Eu(III) complex including dipicolinate ligands. J. Photochem. Photobiol. A 205, 156–160 (2009)

    Article  Google Scholar 

  26. M.R. George, C.A. Golden, M.C. Grossel, R.J. Curry, Modified dipicolinic acid ligands for sensitization of Europium(III) luminescence. Inorg. Chem. 45, 1739–1744 (2006)

    Article  Google Scholar 

  27. A.A. Picot, P.L. Baldeck, C. Andraud, O. Maury, Design of dipicolinic acid ligands for the two-photon sensitized luminescence of europium complexes with optimized cross- sections. Inorg. Chem. 47, 10269–10279 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Guru Gobind Singh Indraprastha University, New Delhi for providing financial support as Indraprastha Research Fellowship for research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anudeep Kumar Narula.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, G., Narula, A.K. Synthesis and optoelectronic properties of three Eu(III)-dipicolinate complexes based on α-picolinic acid, 2-aminopyridine and 2-hydroxypyridine as secondary ligands. J Mater Sci: Mater Electron 26, 1009–1017 (2015). https://doi.org/10.1007/s10854-014-2497-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2497-7

Keywords

Navigation