Effects of DMPPP layer thickness on the performance of deep blue organic light emitting devices

  • Gang Zhang
  • Xiaocui Tian
  • Lina Zhao
  • Jin Wang
  • Wenlong Jiang
  • Xiyan Zhang
  • Weili Dong
  • Yonghui Gao


The deep-blue organic electroluminescent devices with the structure of ITO/Meo-TAD (20 nm)/NPB (10 nm)/DMPPP (3, 5, 10, 15 and 20 nm)/TPBi (10 nm)/Alq3 (20 nm)/LiF (0.5 nm)/Al were fabricated. The 1-(2,5-dimethyl-4-(1-pyrenyl)phenyl)-pyrene (DMPPP) blue fluorescent dye was chosen as the single light emitting layer. The effects of DMPPP layer on the luminescence performance of the devices were investigated in detail. When the DMPPP thickness was 3 nm, the color coordinates of the device were kept around (0.160, 0.099), which exhibit a very good deep blue light emission. The corresponding maximum current efficiency with the CIE coordinate of (0.163, 0.0962) and maximum luminance of the device was 0.88 cd/A and 3,605 cd/m2, respectively. When we further increased the thickness of DMPPP layer, the luminance and efficiency of the devices were improved as well. When the thickness of DMPPP layer were <10 nm, color coordinates were within the scope of deep-blue. When the thickness was 15 nm, color coordinates were in the sky-blue range at the beginning. With the increasing of voltage, color coordinates came into the deep-blue area gradually. When the thickness was 20 nm, color coordinates were outside the scope of deep-blue.


High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Lower Unoccupied Molecular Orbital Energy Color Purity Deep Blue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the national natural science foundation of China under Grant (No. 50772016) and the science and technology development program of Jilin province under Grant (Nos. 20100510, 20101512, 201215221) and the “Twelfth five-year” science and technology research Project of Jilin province department of education under Grant (Nos. 2011154, 2012175, 2012176, 2013208).


  1. 1.
    T. Komoda, N. Ide, K. Varutt et al., J. Soc. Inf. Disp. 19, 838 (2011)CrossRefGoogle Scholar
  2. 2.
    J.P. Spindler, T.K. Hatwar, J. Soc. Inf. Disp. 17, 861 (2009)CrossRefGoogle Scholar
  3. 3.
    Q.L. Niu, Y. Zhang, Y.L. Wang et al., Chin. Sci. Bull. 57, 3639 (2012)CrossRefGoogle Scholar
  4. 4.
    J. Zhong, J. Gao, Z. Gao et al., Opt. Rev. 18, 394 (2011)CrossRefGoogle Scholar
  5. 5.
    H. Sasabe, J.I. Takamatsu, T. Motoyama et al., Adv. Mater. 22, 5003 (2010)CrossRefGoogle Scholar
  6. 6.
    J. Blochwitz-Nimoth, O. Langguth, S. Murano et al., J. Soc. Inf. Disp. 18, 596 (2010)CrossRefGoogle Scholar
  7. 7.
    C. Xiang, W. Koo, F. So, H. Sasabe, J. Kido, Light. Sci. Appl. 2, e74 (2013)CrossRefGoogle Scholar
  8. 8.
    W. Song, M. Meng, Y.H. Kim et al., J. Lumin. 132, 2122 (2012)CrossRefGoogle Scholar
  9. 9.
    R. Wang, L. Deng, M. Fu, J. Cheng, J. Li, J. Mater. Chem. 22, 23454 (2012)CrossRefGoogle Scholar
  10. 10.
    K. Nakayama, W. Ou-Yang, M. Uno, I. Osaka, K. Takimiya, J. Takeya, Org. Electron. 14, 2908 (2013)CrossRefGoogle Scholar
  11. 11.
    J. Lee, M. Slootsky, K. Lee, Y. Zhang, S.R. Forrest, Light. Sci. Appl. 3, e181 (2014)CrossRefGoogle Scholar
  12. 12.
    K.T. Kamtekar, A.P. Monkman, M.R. Bryce, Adv. Mater. 22, 572 (2010)CrossRefGoogle Scholar
  13. 13.
    T.J. Park, W.S. Jeon, J.J. Park et al., Appl. Phys. Lett. 92, 113308 (2008)CrossRefGoogle Scholar
  14. 14.
    S.H. Kim, J. Jang, J.Y. Lee, Appl. Phys. Lett. 91, 083511 (2007)CrossRefGoogle Scholar
  15. 15.
    S.K. Kim, B. Yang, Y. Ma, J.H. Lee, J.W. Park, J. Mater. Chem. 18, 3376 (2008)CrossRefGoogle Scholar
  16. 16.
    C.-H. Chien, C.-K. Chen, F.-M. Hsu et al., Adv. Funct. Mater. 19, 560 (2009)CrossRefGoogle Scholar
  17. 17.
    C.-J. Zheng, W.-M. Zhao, Z.-Q. Wang et al., J. Mater. Chem. 20, 1560 (2010)CrossRefGoogle Scholar
  18. 18.
    M.-T. Lee, H.-H. Chen, C.-H. Liao et al., Appl. Phys. Lett. 85, 3301 (2004)CrossRefGoogle Scholar
  19. 19.
    M.-T. Lee, C.-H. Liao, C.-H. Tsai et al., Adv. Mater. 17, 2493 (2005)CrossRefGoogle Scholar
  20. 20.
    Z.Q. Gao, Z.H. Li, P.F. Xia et al., Adv. Funct. Mater. 17, 3194 (2007)CrossRefGoogle Scholar
  21. 21.
    X. Xing, L. Zhang, R. Liu et al., ACS Appl. Mater. Interfaces 4, 2877 (2012)CrossRefGoogle Scholar
  22. 22.
    H. Fukagawa, S. Irisa, H. Hanashima et al., Org. Electron. 12, 1638 (2011)CrossRefGoogle Scholar
  23. 23.
    S.O. Jeon, S.E. Jang, H.S. Son et al., Adv. Mater. 23, 1436 (2011)CrossRefGoogle Scholar
  24. 24.
    B. Wei, J.-Z. Liu, Y. Zhang et al., Adv. Funct. Mater. 20, 2448 (2010)CrossRefGoogle Scholar
  25. 25.
    J.-H. Jou, J.-R. Tseng, K.-Y. Tseng et al., Org. Electron. 13, 2893 (2012)CrossRefGoogle Scholar
  26. 26.
    C.-C. Wu, Y.-T. Lin, K.-T. Wong et al., Adv. Mater. 16, 61 (2004)CrossRefGoogle Scholar
  27. 27.
    K.-C. Wu, P.-J. Ku, C.-S. Lin et al., Adv. Funct. Mater. 18, 67 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Gang Zhang
    • 1
    • 2
  • Xiaocui Tian
    • 1
  • Lina Zhao
    • 1
  • Jin Wang
    • 1
  • Wenlong Jiang
    • 1
  • Xiyan Zhang
    • 2
  • Weili Dong
    • 2
  • Yonghui Gao
    • 1
  1. 1.Key Laboratory on Functional Materials Physics and Chemistry of Ministry of Education of China, College of Information TechnologyJilin Normal UniversitySipingChina
  2. 2.School of Material Science and EngineeringChangchun University of Science and TechnologyChangchunChina

Personalised recommendations