Controlled solvothermal synthesis of ultrahigh-aspect-ratio Sb2Se3 nanowires and their photoconductive properties

  • Zhe Chen
  • Feng Chen
  • Nai-Di Tan


In this work, ultrahigh-aspect-ratio Sb2Se3 nanowires have been controllably prepared by a mild hydrothermal treatment. X-ray diffraction, X-ray photoelectron spectra, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, and selected area electron diffraction were used to characterize the as-synthesized samples. The result revealed that the as-synthesized products were wire-like with diameter ranging from 20 to 30 nm and length of 30 μm. Meanwhile, various experimental parameters such as concentration of precursors, influence of ethylenediamine, reaction time and the formation of mechanism were discussed and properties of photoconductive of Sb2Se3 were also investigated in detail. In addition, to the best of our knowledge, there have been no any reports on the one-pot synthesis of Sb2Se3 nanomaterials under the benzyl alcohol system.


HRTEM Ethylenediamine Benzyl Alcohol Hydrazine Hydrate Incandescence Lamp 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A.I. Hochbaum, P.D. Yang, Chem. Rev. 110, 527 (2010)CrossRefGoogle Scholar
  2. 2.
    D.T. Schoen, A.P. Schoen, L.B. Hu, H.S. Kim, S.C. Heilshorn, Y. Cui, Nano Lett. 10, 3628 (2010)CrossRefGoogle Scholar
  3. 3.
    T.Y. Zhai, H.M. Liu, H.Q. Li, X.S. Fang, M.Y. Liao, L. Li, H.S. Zhou, Y. Koide, Y. Bando, D. Goberg, Adv. Mater. 22, 2547 (2010)CrossRefGoogle Scholar
  4. 4.
    T. Zhai, L. Li, X. Wang, X.S. Fang, Y. Bando, D. Golberg, Adv. Funct. Mater. 20, 4233 (2010)CrossRefGoogle Scholar
  5. 5.
    Y. Huang, X. Duan, Y. Cui, L. Lauhon, K.H. Kim, C.M. Lieber, Science 294, 1313 (2001)CrossRefGoogle Scholar
  6. 6.
    X.M. Huang, C.A. Zorman, M. Mehregany, M.L. Roukes, Nature 421, 496 (2003)CrossRefGoogle Scholar
  7. 7.
    H.M. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Science 292, 1897 (2001)CrossRefGoogle Scholar
  8. 8.
    N.A. Goriunova, B.T. Kolomiets, A.A. Mal’kova, Sov. Phys. Tech. Phys. 1, 1583 (1956)Google Scholar
  9. 9.
    D. Arivouli, F.D. Gnanam, P. Ramasamy, J. Mater. Sci. Lett. 7, 711 (1988)CrossRefGoogle Scholar
  10. 10.
    T.W. Case, Phys. Rev. 9, 305 (1917)CrossRefGoogle Scholar
  11. 11.
    R.B. Yang, J. Bachmann, M. Reiche, J.W. Gerlach, U. Gösele, K. Nielsch, Chem. Mater. 21, 2586 (2009)CrossRefGoogle Scholar
  12. 12.
    Y. Guang, B.D. Chen, B.C. Guo, T.K. Zhang, W.F. Dong, W.X. Zhang, A.W. Xu, J. Phys. Chem. C 112, 672 (2008)CrossRefGoogle Scholar
  13. 13.
    J.M. Ma, Y.P. Wang, Y.J. Wang, Q. Chen, J.B. Lian, W.J. Zheng, J. Phys. Chem. C 113, 13588 (2009)CrossRefGoogle Scholar
  14. 14.
    Y. Yu, R.H. Wang, Q. Chen, L.M. Peng, J. Phys. Chem. B 110, 13415 (2006)CrossRefGoogle Scholar
  15. 15.
    O. Jyotiranjan, K.S. Suneel, Opt. Mater. 32, 1488 (2010)CrossRefGoogle Scholar
  16. 16.
    T.Y. Zhai, M.F. Ye, L. Li, X.S. Fang, M.Y. Liao, Y.F. Li, Y.S. Koide, Y.S. Bando, D. Golberg, Adv. Mater. 22, 4530 (2010)CrossRefGoogle Scholar
  17. 17.
    N. Pinna, G. Neri, M. Antonietti, M. Niederberger, Angew. Chem. Int. Ed. 43, 4345 (2004)CrossRefGoogle Scholar
  18. 18.
    M. Niederberger, Acc. Chem. Res. 40, 793 (2007)CrossRefGoogle Scholar
  19. 19.
    M. Niederberger, N. Pinna, J. Polleux, M. Antonietti, Angew. Chem. Int. Ed. 43, 2273 (2004)CrossRefGoogle Scholar
  20. 20.
    M. Niederberger, G. Garnweitner, F. Krumeich, R. Nesper, H. Colfen, M. Antonietti, Chem. Mater. 16, 1202 (2004)CrossRefGoogle Scholar
  21. 21.
    N. Pinna, M. Antonietti, M. Niederberger, Colloids Surf. A 250, 211 (2004)CrossRefGoogle Scholar
  22. 22.
    N. Pinna, G. Garnweitner, M. Antonietti, M. Niederberger, Adv. Mater. 16, 2196 (2004)CrossRefGoogle Scholar
  23. 23.
    N. Pinna, G. Garnweitner, P. Beato, M. Niederberger, M. Antonietti, Small 1, 112 (2005)CrossRefGoogle Scholar
  24. 24.
    M. Niederberger, G. Garnweitner, N. Pinna, M. Antonietti, J. Am. Chem. Soc. 126, 9120 (2004)CrossRefGoogle Scholar
  25. 25.
    D.B. Wang, D.B. Yu, M.S. Mo, X.M. Liu, Y.T. Qian, J. Crys, Growth. 253, 445 (2003)CrossRefGoogle Scholar
  26. 26.
    B. Li, G. Rong, Y. Xie, L. Huang, C. Feng, Inorg. Chem. 45, 6404 (2006)CrossRefGoogle Scholar
  27. 27.
    W.Z. Ostwald, Phys. Chem. 34, 495 (1900)Google Scholar
  28. 28.
    S.J. Bao, Q.L. Bao, C.M. Li, T.P. Chen, C.Q. Sun, Z.L. Dong, Y. Gan, Small 3, 1174 (2007)CrossRefGoogle Scholar
  29. 29.
    T.Y. Zhai, X.S. Fang, M.Y. Liao, X.J. Xu, H.B. Zeng, Y. Bando, D. Golberg, Sensors 9, 6504 (2009)CrossRefGoogle Scholar
  30. 30.
    Y.L. Chueh, C.H. Hsieh, M.T. Chang, L.J. Chou, C.S. Lao, J.H. Song, J.Y. Gan, Z.L. Wang, Adv. Mater. 19, 143 (2007)CrossRefGoogle Scholar
  31. 31.
    X. Fan, X.M. Meng, X.H. Zhang, M.L. Zhang, J.S. Jie, W.J. Zhang, C.S. Lee, S.T. Lee, J. Phys. Chem. C 113, 834 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Jilin Institute of Chemical TechnologyJilinChina
  2. 2.Jilin Petrochemical Company Organic Synthetic PlantsJilinChina

Personalised recommendations