Advertisement

Nano-sized boron nitride epoxy composites for underfill application: effect of diluent and filler loading

  • S. Muhammad Firdaus
  • M. Mariatti
Article

Abstract

Effect of ethanol as diluent in the preparation of nano-sized boron nitride filler filled epoxy composites was investigated. Ethanol at 10 wt% was used to reduce the viscosity of epoxy composites. Filler loading up to 6 vol% is able to be added in the diluent system, as compared to 4 vol% in the non-diluent system. Sonication process was used to facilitate filler dispersion. At 4 vol% filler loadings, diluent system showed 36 % higher in flow rates than non-diluent system. Apparently, non-diluent system showed higher flexural strength, modulus, thermal conductivity, and lower coefficient of thermal expansion (CTE) than that of diluent system. However, when the filler loading is up to 6 vol% for the diluent system, CTE is reduced 4.3 % and thermal conductivity increased 6.9 % if compared to 4 vol% non-diluent system. In general, it is concluded that diluent system at 6 vol% exhibit better flowability, CTE and thermal conductivity to fabricate underfill materials.

Keywords

Flexural Strength Boron Nitride Epoxy Composite Solder Bump Flexural Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The present work was supported by the research grant from Ministry of Education Malaysia for granting Explorating Research Grant Scheme (ERGS). Special thanks also to MyMaster financing program (MyBrain15) and Graduate Assistant Scheme.

References

  1. 1.
    C.P. Wong, Fellow, IEEE, M.M. Wong, IEEE Trans. Compon. Packag. Manuf. Technol. 22(1), 21 (1999)Google Scholar
  2. 2.
    J.W. Wan, W.J. Zhang, D.J. Bergstrom, Microelectron. J. 38(1), 67 (2007)CrossRefGoogle Scholar
  3. 3.
    E. Madenci, S. Shkarayev, R. Mahajan, J. Electron. Packag. 120(4), 336 (1998)CrossRefGoogle Scholar
  4. 4.
    C.P. Wong, Fellow, IEEE, M.B. Vincent, S. Shi, IEEE Trans. Compon. Packag. Manuf. Technol. A 21(2), 360 (1998)Google Scholar
  5. 5.
    T. Braun, K.F. Becker, M. Koch, V. Bader, R. Aschenbrenner, H. Reichl, Microelectron. Reliab. 46(1), 144 (2006)CrossRefGoogle Scholar
  6. 6.
    K. Darbha, J.H. Okura, A. Dasgupta, IEEE Compon. Packag. Manuf. Technol. Soc. A 21(2), 275 (1998)Google Scholar
  7. 7.
    H. Mavoori, S. Jin, JOM 50(6), 70 (1998)CrossRefGoogle Scholar
  8. 8.
    H.T. Vo, M. Todd, F.G. Shi, A.A. Shapiro, M. Edward, Microelectron. J. 32(4), 331 (2001)CrossRefGoogle Scholar
  9. 9.
    J. Wang, Microelectron. Reliab. 47(12), 1958 (2007)CrossRefGoogle Scholar
  10. 10.
    S. Muhammad, Firdaus, J. Mariatti. J. Eng. Sci. 9, 89 (2013)Google Scholar
  11. 11.
    W.S. Lee, J. Yu, Diam. Relat. Mater. 14(10), 1647 (2005)CrossRefGoogle Scholar
  12. 12.
    W.S. Lee, I.Y. Han, J. Yu, S.J. Kim, K.Y. Byun, Thermochim. Acta 455, 148 (2007)CrossRefGoogle Scholar
  13. 13.
    P.L. Teh, M. Mariatti, H.M. Akil, K.N. Seethamaru, A.N.R. Wagiman, K.S. Beh, J. Compos. Mater. 42(2), 129 (2008)Google Scholar
  14. 14.
    M.F. Shih, W.B. Young, Microelectron. Reliab. 49(12), 1555 (2009)CrossRefGoogle Scholar
  15. 15.
    B. Dewprashad, E.J. Eisenbraun, J. Chem. Educ. 71(4), 290 (1994)CrossRefGoogle Scholar
  16. 16.
    M.T. Huang, H. Ishida, Polym. Polym. Compos. 7(4), 233 (1999)Google Scholar
  17. 17.
    R. Voo, M. Mariatti, L.C. Sim, J. Plast. Film Sh. 27(4), 331 (2011)CrossRefGoogle Scholar
  18. 18.
    S.Y. Fu, X.Q. Feng, B. Lauke, Y.W. Mai, Compos. Part B Eng. 39(6), 933 (2008)CrossRefGoogle Scholar
  19. 19.
    S. Muhammad Firdaus, M. Mariatti, J. Mater. Sci. Mater. Electron. 23(7), 1293 (2011)Google Scholar
  20. 20.
    M. Chaturvedi, Y.L. Shen, Acta Mater. 46(12), 4287 (1998)CrossRefGoogle Scholar
  21. 21.
    W.D. Fei, M. Hu, C.K. Yao, Mater. Chem. Phys. 77(3), 882 (2003)CrossRefGoogle Scholar
  22. 22.
    S. Tognana, W. Salgueiro, A. Samoza, J. A. Pomarico, H. F. Ranea-Sandoval, Mater. Sci. and Eng.: B, 157(1-3), 26 (2009)Google Scholar
  23. 23.
    K.L. Chan, M. Mariatti, Z. Lockman, L.C. Sim, J. Mater. Sci. Mater. Electron. 21(8), 772 (2010)CrossRefGoogle Scholar
  24. 24.
    H. Zhou, S. Zhang, M. Yang, Compos. Sci. Technol. 67(6), 1035 (2007)CrossRefGoogle Scholar
  25. 25.
    M.S. Nurul, M. Mariatti, J. Thermoplast. Compos. Mater. 26(5), 627 (2011)CrossRefGoogle Scholar
  26. 26.
    N.A. Farrah, J. Mariatti, S. Palaniandy, A.A. Khairun, Compos. Sci. Technol. 68(2), 346 (2008)CrossRefGoogle Scholar
  27. 27.
    S. Palaniandy, A.A. Khairun, J. Mariatti, N.A. Farrah, H. Hashim, S.H. Syed Fuad, Powder Technol. 185(1), 54 (2008)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Materials and Mineral Resources EngineeringUniversiti Sains MalaysiaSeberang Perai SelatanMalaysia

Personalised recommendations