Piezoelectric nanogenerator with 3D-ZnO micro-thornyballs prepared by chemical vapour deposition

  • Bing Yin
  • Yu Qiu
  • Heqiu Zhang
  • Jiuyu Ji
  • Jixue Lei
  • Yingmin Luo
  • Yu Zhao
  • Lizhong Hu


Piezoelectric nanogenerators have been intensively developed in terms of their materials and applications; however, only modest structural progress has been made due to limitations in the growth mechanisms of nano-materials. In this work, a piezoelectric nanogenerator based on ZnO micro-thornyballs (ZMTBs) was introduced. ZMTBs were synthesized by chemical vapor deposition method without the presence of any seed layers or substrates. Electrical characterization was subsequently performed to reveal the characteristics of the contacts formed between the ZnO micro-thornyballs and the copper electrode. The electric output ability of the ZNTTs nanogenerators has been studied in reference to the experiment and the numerically calculation.


Energy Harvesting Bottom Electrode Copper Sheet Horizontal Tube Furnace Vertical Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the NSFC (Project No. 60777009), the Key Laboratory Projects of The Education Department of Liaoning Province (Project No. 20060131), the Fundamental Research Funds for the Central Universities (Project No. DUT11LK46), the Doctoral Project by the China Ministry of Education (Project No. 20070141038), and Open Fund by Laboratory for MEMS, Liaoning Province.


  1. 1.
    Z.L. Wang, J.H. Song, Science 312, 242 (2006)CrossRefGoogle Scholar
  2. 2.
    Z.L. Wang, Mater. Sci. Eng. R Rep. 64, 33 (2009)CrossRefGoogle Scholar
  3. 3.
    Y. Gao, Z.L. Wang, Nano Lett. 7, 2499 (2007)CrossRefGoogle Scholar
  4. 4.
    B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Nature 449, 885 (2007)CrossRefGoogle Scholar
  5. 5.
    W.C. Li, F. Reisdorffer, T.P. Nguyen, H.L. Kwok, J. Mater. Sci. Mater. Electron. 24, 3788 (2013)CrossRefGoogle Scholar
  6. 6.
    J.G. Lv, F. Wang, Z.T. Zhou, C.L. Liu, W.B. Gong, X.S. Chen, G. He, S. Shi, X.P. Song, Z.Q. Sun, F. Liu, J. Mater. Sci. Mater. Electron 24, 3036 (2013)CrossRefGoogle Scholar
  7. 7.
    X.D. Wang, Nano Energy 1, 13 (2012)CrossRefGoogle Scholar
  8. 8.
    B. Kumar, S.W. Kim, J. Mater. Chem. 21, 18946 (2011)CrossRefGoogle Scholar
  9. 9.
    M.P. Lu, J. Song, M.Y. Lu, M.T. Chen, Y. Gao, L.J. Chen, Z.L. Wang, Nano Lett. 9, 1223 (2009)CrossRefGoogle Scholar
  10. 10.
    C.Y. Chen, G. Zhu, Y.F. Hu, J.W. Yu, J.H. Song, K.Y. Cheng, L.H. Peng, L.J. Chou, Z.L. Wang, ACS Nano 6, 5687 (2012)CrossRefGoogle Scholar
  11. 11.
    C.T. Huang, J.H. Song, C.M. Tsai, W.F. Lee, D.H. Lien, Z.Y. Gao, Y. Hao, L.J. Chen, Z.L. Wang, Adv. Mater. 22, 4008 (2010)CrossRefGoogle Scholar
  12. 12.
    Y.F. Lin, J. Song, Y. Ding, S.Y. Lu, Z.L. Wang, Appl. Phys. Lett. 92, 022105 (2008)Google Scholar
  13. 13.
    A. Kathalingam, S. Valanarasu, V. Senthilkumar, J.K. Rhee, Mater. Chem. Phys. 138, 262 (2013)CrossRefGoogle Scholar
  14. 14.
    J. Zhou, Y.D. Gu, P. Fei, W.J. Mai, Y.F. Gao, R.S. Yang, G. Bao, Z.L. Wang, Nano Lett. 8, 3035 (2008)CrossRefGoogle Scholar
  15. 15.
    O. Lupan, L. Chow, T. Pauporte, L.K. Ono, B.R. Cuenya, G. Chai, Sens. Actuators B Chem 173, 772 (2012)CrossRefGoogle Scholar
  16. 16.
    O. Lupan, L. Chow, G.Y. Chai, Sens. Actuators B Chem. 141, 511 (2009)CrossRefGoogle Scholar
  17. 17.
    S.H. Lee, S.S. Lee, J.J. Choi, J.U. Jeon, R. Ko, Adv. Nondestruct. Eval. Pt 1–3 1095, 270–273 (2004)Google Scholar
  18. 18.
    Z.L. Wang, Adv. Mater. 24, 4632 (2012)CrossRefGoogle Scholar
  19. 19.
    M.B. Starr, J. Shi, X.D. Wang, Angew Chem. Int. Ed. 51, 5962 (2012)CrossRefGoogle Scholar
  20. 20.
    M.L. Seol, J.M. Choi, J.Y. Kim, J.H. Ahn, D.I. Moon, Y.K. Choi, Nano Energy 2, 1142 (2013)CrossRefGoogle Scholar
  21. 21.
    X.Q. Fang, J.X. Liu, V. Gupta, Nanoscale 5, 1716 (2013)CrossRefGoogle Scholar
  22. 22.
    Z.L. Wang, in piezotronics and piezo-phototronics (Springer, Berlin, 2012), p. 19Google Scholar
  23. 23.
    R. Yang, Y. Qin, C. Li, G. Zhu, Z.L. Wang, Nano Lett. 9, 1201 (2009)CrossRefGoogle Scholar
  24. 24.
    S.M. Kim, J.I. Sohn, H.J. Kim, J. Ku, Y.J. Park, S.N. Cha, J.M. Kim, Appl. Phys. Lett. 101, 013104 (2012)Google Scholar
  25. 25.
    Z.L. Wang, Adv. Mater. 24, 280 (2012)CrossRefGoogle Scholar
  26. 26.
    G.M. Wang, X.Y. Yang, F. Qian, J.Z. Zhang, Y. Li, Nano Lett. 10, 1088 (2010)CrossRefGoogle Scholar
  27. 27.
    S.N. Cha, J.S. Seo, S.M. Kim, H.J. Kim, Y.J. Park, S.W. Kim, J.M. Kim, Adv. Mater. 22, 4726 (2010)CrossRefGoogle Scholar
  28. 28.
    G. Romano, G. Mantini, A. Di Carlo, A. D’Amico, C. Falconi, Z.L. Wang, Nanotechnology 22, 465401 (2011)CrossRefGoogle Scholar
  29. 29.
    X. Wang, J. Zhou, C. Lao, J. Song, N. Xu, Z.L. Wang, Adv. Mater. 19, 1627 (2007)CrossRefGoogle Scholar
  30. 30.
    R. Agrawal, H.D. Espinosa, Nano Lett. 11, 786 (2011)CrossRefGoogle Scholar
  31. 31.
    M.Q. Israr, J.R. Sadaf, L.L. Yang, O. Nur, M. Willander, J. Palisaitis, P.O.A. Persson, Appl. Phys. Lett. 95, 073114 (2009)Google Scholar
  32. 32.
    G.W. She, X.H. Zhang, W.S. Shi, X. Fan, J.C. Chang, Electrochem. Commun. 9, 2784 (2007)CrossRefGoogle Scholar
  33. 33.
    M.-H. Zhao, Z.-L. Wang, S.X. Mao, Nano Lett. 4, 587 (2004)CrossRefGoogle Scholar
  34. 34.
    Y. Xi, J. Song, S. Xu, R. Yang, Z. Gao, C. Hu, Z.L. Wang, J. Mater. Chem. 19, 9260 (2009)CrossRefGoogle Scholar
  35. 35.
    F. Li, C.W. Zhang, P.J. Wang, P. Li, Appl. Surf. Sci. 258, 6621 (2012)CrossRefGoogle Scholar
  36. 36.
    J. Yan, X.S. Fang, L.D. Zhang, Y. Bando, U.K. Gautam, B. Dierre, T. Sekiguchi, D. Golberg, Nano Lett. 8, 2794 (2008)CrossRefGoogle Scholar
  37. 37.
    X.Y. Kong, Y. Ding, R. Yang, Z.L. Wang, Science 303, 1348 (2004)CrossRefGoogle Scholar
  38. 38.
    W.-Z. Wang, B.-Q. Zeng, J. Yang, B. Poudel, J. Huang, M.J. Naughton, Z. Ren, Adv. Mater. 18, 3275 (2006)CrossRefGoogle Scholar
  39. 39.
    Z.L. Wang, R. Yang, J. Zhou, Y. Qin, C. Xu, Y. Hu, S. Xu, Mater. Sci. Eng. R Rep. 70, 320 (2010)CrossRefGoogle Scholar
  40. 40.
    R. Yousefi, B. Kamaluddin, Appl. Surf. Sci. 255, 9376 (2009)CrossRefGoogle Scholar
  41. 41.
    G. Li, B. Wang, Y. Liu, T. Tan, X. Song, H. Yan, Appl. Surf. Sci. 255, 3112 (2008)CrossRefGoogle Scholar
  42. 42.
    Z.Z. Shao, L.Y. Wen, D.M. Wu, X.F. Wang, X.A. Zhang, S.L. Chang, J. Phys. D Appl. Phys. 43, 245403 (2010)Google Scholar
  43. 43.
    H. Fujisawa, Y. Imi, S. Nakashima, M. Shimizu, Y. Kotaka, K. Honda, J. Appl. Phys. 112, 034111 (2012)CrossRefGoogle Scholar
  44. 44.
    C. Falconi, G. Mantinia, A. D’Amico, Z.L. Wang, Sens. Actuators B Chem. 139, 511 (2009)CrossRefGoogle Scholar
  45. 45.
    Z. Yan, L.Y. Jiang, J. Phys. D-Appl. Physics 44, 365361 (2011)Google Scholar
  46. 46.
    R.A. Laudise, A.A. Ballman, J. Phys. Chem. 64, 688 (1960)CrossRefGoogle Scholar
  47. 47.
    N.S. Liu, G.J. Fang, W. Zeng, H. Long, L.Y. Yuan, X.Z. Zhao, J. Phys. Chem. C 115, 570 (2011)CrossRefGoogle Scholar
  48. 48.
    K. Lefki, G.J.M. Dormans, J. Appl. Phys. 76, 1764 (1994)CrossRefGoogle Scholar
  49. 49.
    G. Zhu, A.C. Wang, Y. Liu, Y.S. Zhou, Z.L. Wang, Nano Lett. 12, 3086 (2012)CrossRefGoogle Scholar
  50. 50.
    S. Xu, Y. Qin, C. Xu, Y.G. Wei, R.S. Yang, Z.L. Wang, Nat. Nanotechnol. 5, 366 (2010)CrossRefGoogle Scholar
  51. 51.
    G.A. Zhu, R.S. Yang, S.H. Wang, Z.L. Wang, Nano Lett. 10, 3151 (2010)CrossRefGoogle Scholar
  52. 52.
    R. Araneo, C. Falconi, Nanotechnology 24, 265707 (2013)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Bing Yin
    • 1
  • Yu Qiu
    • 1
  • Heqiu Zhang
    • 1
  • Jiuyu Ji
    • 1
  • Jixue Lei
    • 1
  • Yingmin Luo
    • 1
  • Yu Zhao
    • 1
  • Lizhong Hu
    • 1
  1. 1.School of Physics and Optoelectronic TechnologyDalian University of TechnologyDalianChina

Personalised recommendations