Advertisement

ZnO nanorod arrays pre-coated with DCJTB dye for inverted type hybrid solar cells incorporating P3HT donor

  • Eng Liang Lim
  • Chi Chin Yap
  • Muhammad Yahaya
  • Muhamad Mat Salleh
  • Mohammad Hafizuddin Haji Jumali
Article

Abstract

This paper reports the utilization of a fluorescent dye, 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetra-methyljulolidyl-9-enyl)-4H-pyran (DCJTB) as the surface modifier of ZnO nanorods for inverted type hybrid solar cell application. The DCJTB solution with concentrations of 10 and 15 mM was spin-coated onto the ZnO nanorod arrays grown on the fluorine-doped tin oxide glass substrate pre-coated with ZnO seed layer. The poly(3-hexylthiophene-2,5-diyl) (P3HT) as electron donor was then spin-coated onto ZnO nanorod arrays, followed by the deposition of silver as anode using magnetron sputtering technique. A large portion of pre-coated DCJTB has been redissolved and washed out in the subsequent P3HT spin coating process. Nevertheless, the increase in hydrophobicity of ZnO nanorod arrays pre-coated with DCJTB leads to improved interfacial compatibility between ZnO nanorods and P3HT. As a result, the enhanced exciton dissociation efficiency at the ZnO nanorods/P3HT interfaces results in the increment of short circuit current density and open circuit voltage. In addition, DCJTB residue covering the FTO exposed area could reduce the hole leakage current from P3HT to FTO, hence resulting in higher open circuit voltage. The device with the optimum DCJTB pre-coating concentration of 10 mM exhibited almost two times increase in power conversion efficiency as compared to that of pristine device.

Keywords

High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Power Conversion Efficiency Rubrene Hybrid Solar Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work has been financially supported by Universiti Kebangsaan Malaysia under DLP-2013-040 research grant. The authors would like to thank Mr. Idris Zulkifle from School of Applied Physics, Universiti Kebangsaan Malaysia for Ag sputtering. The authors would also like to acknowledge Miss Seow Siew Siew for FESEM characterizations.

References

  1. 1.
    Z. Yuan, J. Yu, N. Wang, Y. Jiang, J. Mater. Sci.: Mater. Electron. 22, 1730 (2011)Google Scholar
  2. 2.
    J. Xi, O. Wiranwetchayan, Q. Zhang, Z. Liang, Y. Sun, G. Cao, J. Mater. Sci.: Mater. Electron. 23, 1657 (2012)Google Scholar
  3. 3.
    J. Hu, Z. Wu, H. Wei, T. Song, B. Sun, Org. Electron. 13, 1171 (2012)CrossRefGoogle Scholar
  4. 4.
    R. Thitima, C. Patcharee, S. Takashi, Y. Susumu, Solid-State Electron. 53, 176 (2009)CrossRefGoogle Scholar
  5. 5.
    S.D. Oosterhout, L.J.A. Koster, S.S. van Bavel, J. Loos, O. Stenzel, R. Thiedmann, V. Schmidt, B. Campo, T.J. Cleij, L. Lutzen, D. Vanderzande, M.M. Wienk, R.A.J. Janssen, Adv. Energy Mater. 1, 90 (2011)CrossRefGoogle Scholar
  6. 6.
    P. Ruankham, S. Yoshikawa, T. Sagawa, Phys. Chem. Chem. Phys. 15, 9516 (2013)CrossRefGoogle Scholar
  7. 7.
    D. Bi, F. Wu, Q. Qu, W. Yue, Q. Cui, W. Shen, R. Chen, C. Liu, Z. Qiu, M. Wang, J. Phys. Chem. C 115, 3745 (2011)CrossRefGoogle Scholar
  8. 8.
    C.-T. Chen, F.-C. Hsu, Y.-M. Sung, H.-C. Liao, W.-C. Yen, W.-F. Su, Y.-F. Chen, Sol. Energy Mater. Sol. Cells 107, 69 (2012)CrossRefGoogle Scholar
  9. 9.
    Y. Yan, S. Zhao, Z. Xu, G. Wei, L. Wang, Sci. China Phys. Mech. Astron. 54, 453 (2011)CrossRefGoogle Scholar
  10. 10.
    E.L. Lim, C.C. Yap, M. Yahaya, M.M. Salleh, Semicond. Sci. Technol. 28, 045009 (2013)CrossRefGoogle Scholar
  11. 11.
    P. Ruankham, L. Macaraig, T. Sagawa, H. Nakazumi, S. Yoshikawa, J. Phys. Chem. C 115, 23809 (2011)CrossRefGoogle Scholar
  12. 12.
    P. Zhao, H. Tang, Q. Zhang, Y. Pi, M. Xu, R. Sun, W. Zhu, Dyes Pigments 82, 316 (2009)CrossRefGoogle Scholar
  13. 13.
    Y. Zang, J.-S. Yu, N.-N. Wang, Y.-D. Jiang, Chin. Phys. B 20, 017202 (2011)CrossRefGoogle Scholar
  14. 14.
    S.L. Lai, M.F. Lo, M.Y. Chan, C.S. Lee, S.T. Lee, Appl. Phys. Lett. 95, 153303 (2009)CrossRefGoogle Scholar
  15. 15.
    D. Yang, W. Li, B. Chu, Z. Su, J. Wang, G. Zhang, F. Zhang, Appl. Phys. Lett. 99, 193301 (2011)CrossRefGoogle Scholar
  16. 16.
    J. Huang, J. Yu, W. Wang, Y. Jiang, Appl. Phys. Lett. 98, 023301 (2011)CrossRefGoogle Scholar
  17. 17.
    J.-Y. Chen, F.-C. Hsu, Y.-M. Sung, Y.-F. Chen, J. Mater. Chem. 22, 15726 (2012)CrossRefGoogle Scholar
  18. 18.
    C.G. Allen, D.J. Baker, T.M. Brenner, C.C. Weigand, J.M. Albin, K.X. Steirer, D.C. Olson, C. Ladam, D.S. Ginley, R.T. Collins, T.E. Furtak, J. Phys. Chem. C 116, 8872 (2012)CrossRefGoogle Scholar
  19. 19.
    T. Zhang, Z. Xu, L. Qian, D. L. Tao, F. Teng, X. R. Xu, Opt. Mater. 29, 216 (2006)Google Scholar
  20. 20.
    M. Zhong, D. Sheng, C. Li, S. Xu, X. Wei, Sol. Energy Mater. Sol. Cells 121, 22 (2014)CrossRefGoogle Scholar
  21. 21.
    G. Garcia-Belmonte, A. Munar, E.M. Barea, J. Bisquert, I. Ugarte, R. Pacios, Org. Electron. 9, 847 (2008)CrossRefGoogle Scholar
  22. 22.
    Y.-Y. Lin, Y.-Y. Lee, L. Chang, J.-J. Wu, C.-W. Chen, Appl. Phys. Lett. 94, 063308 (2009)CrossRefGoogle Scholar
  23. 23.
    T. Segal-Peretz, O. Leman, A.M. Nardes, G.L. Frey, J. Phys. Chem. C 116, 2024 (2012)CrossRefGoogle Scholar
  24. 24.
    K.H. Lee, B. Kumar, H.J. Park, S.W. Kim, Nanoscale Res. Lett. 5, 1908 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Eng Liang Lim
    • 1
  • Chi Chin Yap
    • 1
  • Muhammad Yahaya
    • 1
  • Muhamad Mat Salleh
    • 2
  • Mohammad Hafizuddin Haji Jumali
    • 1
  1. 1.School of Applied Physics, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaSelangorMalaysia
  2. 2.Institute of Microengineering and Nanoelectronics (IMEN)Universiti Kebangsaan MalaysiaSelangorMalaysia

Personalised recommendations