One step synthesis, optimization and growth mechanism carambola fruit shaped CuO nanostructures: electrochromic performance

  • D. Magimai Antoni Raj
  • A. Dhayal Raj
  • A. Albert Irudayaraj
  • R. L. Josephine
  • M. Senthil Kumar
  • M. Thambidurai


Micro and nanostructures with well-defined shape have attracted great interest due to their novel properties and diverging applications. Herein the one step simple sonochemical method for the synthesis of carambola fruit shaped and spindle shaped semiconducting copper oxide nanostructures are described. The pH concentration and the reaction time have been varied in order to find the optimized condition in which spindle shaped and carambola fruit shaped CuO nanoparticles are obtained. Also the effect of pH and reaction time on the properties of CuO nanostructures have been investigated and reported. The possible growth mechanism for the carambola fruit shaped structures has also been discussed. The prepared samples have been characterized using scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and UV–visible spectrophotometry.


Precursor Solution Ultrasonic Irradiation Oriented Attachment Lower Reaction Time Size Confinement Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to express their sincere thanks to the management of Sacred Heart College, Tirupattur for providing research facilities for conducting this work.


  1. 1.
    H. Wang, J.Z. Xu, J.J. Zhu, H.Y. Chen, Preparation of CuO nanoparticles by microwave irradiation. J. Cryst. Growth 244, 88–94 (2002)CrossRefGoogle Scholar
  2. 2.
    E.C. Scher, L. Manna, A.P. Alivisatos, Shape control and applications of nanocrystals. Philos. Trans. R. Soc. Lond. Ser. A. 361, 241–257 (2003)CrossRefGoogle Scholar
  3. 3.
    S. Link, M.A. El-Sayed, Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem. 54, 331–366 (2003)CrossRefGoogle Scholar
  4. 4.
    Y. Wang, M. Li, Hydrothermal synthesis of single-crystalline hexagonal prism ZnO Nanorods. Mater. Lett. 60, 266–269 (2006)CrossRefGoogle Scholar
  5. 5.
    H.M. Xiao, L.P. Zhu, X.M. Liu, S.Y. Fu, Anomalous ferromagnetic behavior of CuO nanorods synthesized via hydrothermal method. Solid State Commun. 141, 431–435 (2007)CrossRefGoogle Scholar
  6. 6.
    K.W. Commander, A. Prosperetti, Linear pressure waves in bubbly liquids: comparison between theory and experiments. J. Acoust. Soc. Am. 85(2), 732–746 (1988)CrossRefGoogle Scholar
  7. 7.
    X. Zheng, X. Zhang, Z. Fang, X. Wang, S. Wang, S. Wu, Characterization and catalysis studies of CuO/CeO2 model catalysts. Catal. Commun. 7, 701–704 (2006)CrossRefGoogle Scholar
  8. 8.
    O. Akhavan, E. Ghaderi, Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photocatalysts. Surf. Coat. Technol. 205, 219–223 (2010)CrossRefGoogle Scholar
  9. 9.
    D. Gopalakrishna, K. Vijayalakshmin, C. Ravidhas, Effect of annealing on the properties of nanostructured CuO thin films for enhanced ethanol sensitivity. Ceram. Int. 39, 7685–7691 (2013)CrossRefGoogle Scholar
  10. 10.
    K.C. Sanal, L.S. Vikas, M.K. Jayaraj, Room temperature deposited transparent p-channel CuO thin film transistors. Appl. Surf. Sci. 297, 153–157 (2014)CrossRefGoogle Scholar
  11. 11.
    S.K. Kumar, S. Suresh, S. Murugesan, S.P. Raj, CuO thin films made of nanofibers for solar selective absorber applications. Sol. Energy. 94, 299–304 (2013)CrossRefGoogle Scholar
  12. 12.
    A. Rahnama, M. Gharagozlou, A.R. Gardeshzadeh, Comparative study of copper precursors for synthesis of CuO nanoparticles by ultrasonic-assisted thermal decomposition method. J. Indian Chem. Soc. 90, 271–277 (2013)Google Scholar
  13. 13.
    I. Mohammadpoor-Baltork, V. Mirkhani, M. Moghadam, S. Tangestaninejad, M.A. Zolfigol, M.A. Alibeik, A.R. Khosropour, H. Kargar, S.F. Hojati, Silica sulfuric acid: a versatile and reusable heterogeneous catalyst for the synthesis of oxazolines and imidazolines under various reaction conditions. Catal. Commun. 9, 894–901 (2008)CrossRefGoogle Scholar
  14. 14.
    M.H. Entezari, P. Kruus, Effect of frequency on sonochemical reactions II. Temperature and intensity effects. Ultrason. Sonochemistry 3, 19–24 (1996)CrossRefGoogle Scholar
  15. 15.
    M.H. Lim, S.H. Kim, Y.K. Kim, J. Khim, Sonolysis of chlorinated compounds in aqueous solution. Ultrason. Sonochemistry 14, 93–98 (2007)CrossRefGoogle Scholar
  16. 16.
    M.H. Entezari, P. Kruus, R. Otson, The effect of frequency on sonochemical reactions III: dissociation of carbon disulfide. Ultrason. Sonochemistry 4, 49–54 (1997)CrossRefGoogle Scholar
  17. 17.
    S. Findik, G. Gunduz, E. Gunduz, Direct sonication of acetic acid in aqueous solutions. Ultrason. Sonochemistry 13, 203–207 (2006)CrossRefGoogle Scholar
  18. 18.
    M. Sivakumar, A. Gedanken, Insights into the sonochemical decomposition of Fe (CO)5: theoretical and experimental understanding of the role of molar concentration and power density on the reaction yield. Ultrason. Sonochemistry 11, 373–378 (2004)Google Scholar
  19. 19.
    M.V. Landau, L. Vradman, M. Herskowitz, Y. Koltypin, Ultrasonically controlled deposition-precipitation: Co–Mo HDS catalysis on wide-pore MCM material. J. Catal. 201, 22–36 (2001)CrossRefGoogle Scholar
  20. 20.
    H. Wang, Y.N. Lu, J.J. Zhu, H.Y. Chen, Sonochemical fabrication and characterization of stibnite nanorods. Inorg. Chem. 42, 6404–6411 (2003)CrossRefGoogle Scholar
  21. 21.
    J.H. Zhang, Z. Chen, Z.L. Wang, N.B. Ming, Sonochemical method for the synthesis of antimony sulfide microcrystallites with controllable morphology. J. Mater. Res. 18, 1804–1808 (2003)CrossRefGoogle Scholar
  22. 22.
    T. Ding, H.J.J. Zhu, J.M. Hong, Sonochemical preparation of HgSe nanoparticles by using different reductants. Mater. Lett. 57, 4445–4449 (2003)CrossRefGoogle Scholar
  23. 23.
    M.A. Alavi, A. Morsali, Synthesis of BaCO3 nanostructures by ultrasonic method. Ultrason. Sonochemistry 15, 833–838 (2008)CrossRefGoogle Scholar
  24. 24.
    L. Hashemi, A. Morsali, Synthesis and characterization of a new nano lead (II) two-dimensional coordination polymer by sonochemical method: a precursor to produce pure phase nano-sized lead(II) oxide. J. Inorg. Organomet. Polym. 20, 856–861 (2010)CrossRefGoogle Scholar
  25. 25.
    A. Dhayal Raj, P. Suresh Kumar, D. Mangalaraj, N. Ponpandian, A. Albert Irudayaraj, Q. Yang, Gas sensing behavior of high surface area Co3O4 micro/nano structures synthesized by simple sonication process. Sens. Lett. 10, 826–832 (2012)CrossRefGoogle Scholar
  26. 26.
    S. Bharathi, D. Nataraj, M. Seetha, D. Mangalaraj, N. Ponpandian, Y. Masuda, K. Senthil, K. Yong, Controlled growth of single-crystalline, nanostructured dendrites and snowflakes of a-Fe2O3: influence of the surfactant on the morphology and investigation of morphology dependent magnetic properties. Cryst. Eng. Comm. 12, 373–382 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • D. Magimai Antoni Raj
    • 1
  • A. Dhayal Raj
    • 1
  • A. Albert Irudayaraj
    • 1
  • R. L. Josephine
    • 2
  • M. Senthil Kumar
    • 3
  • M. Thambidurai
    • 4
  1. 1.Department of PhysicsSacred Heart CollegeTirupattur, Vellore DistrictIndia
  2. 2.Department of Electrical and Electronics EngineeringCoimbatore Institute of TechnologyCoimbatoreIndia
  3. 3.Department of PhysicsKarunya UniversityCoimbatoreIndia
  4. 4.Department of Electrical and Computer Engineering, Global Frontier Center for Multiscale Energy SystemsSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations