Structural, optical and electrical properties of ion beam irradiated cadmium selenate nanowires



Present study is related to the synthesis of cadmium selenate nanowires via template-assisted electrodeposition approach and their characterization before and after lithium (Li3+) ion beam irradiation. Energy-dispersive X-ray analysis and X-ray diffraction study confirmed the synthesis of cadmium selenate nanowires with monoclinic structure. Electrical properties were examined with current–voltage (I–V) source meter using two-probe method. The electrical conductivity augmentation was perceptible for semiconducting nanowires with the increase in the ion beam fluence. The band gap of pristine nanowires was found to be 1.96 eV, while the red shift was observed in the optical band gap of ion irradiated nanowires and it approaches to the value of 1.31 eV at last fluence. In XRD spectra, no evidence was found of phase change or shifting in ‘2θ’ position or evolution of any new peak. However, variation in the peak intensities was noticed that could be the result of movement of plane orientation. This study revealed that the defects induced by the ion irradiation and variation in potential gradient with fluence plays a major role in the alteration of the optical and electrical properties of the semiconducting nanowires.


Charge Carrier Schottky Barrier High Fluence Texture Coefficient Resonant Tunneling Diode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank the help provided from the Director and technical staff of pelletron group during the irradiation experiment at Inter University Accelerator Centre (IUAC), New Delhi, India. Authors also acknowledge NIT Kurukshetra, India for SEM and XRD facilities and SAI Lab, Thapar University, Patiala, India for providing EDS facility.


  1. 1.
    D.A. Wharam, T.J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J.E.F. Frost, D.G. Hasko, D.C. Peacock, D.A. Ritchie, G.A.C. Jones, J. Phys. C: Solid State Phys. 21, L209 (1988)CrossRefGoogle Scholar
  2. 2.
    Z.M. Liao, C. Hao, L.P. Liu, D.P. Yu, Nanoscale Res. Lett. 5, 926 (2010)CrossRefGoogle Scholar
  3. 3.
    M. Tana, Y. Deng, Y. Wang, Nano Energy 3, 144 (2014)CrossRefGoogle Scholar
  4. 4.
    C. Cheng, H.J. Fan, Nano Today 7, 327 (2012)CrossRefGoogle Scholar
  5. 5.
    V. Kumar, S. Kumar, S.K. Chakarvarti, J. Mater. Sci. Mater. Electron. 21, 1277 (2010)CrossRefGoogle Scholar
  6. 6.
    S.T. Lai, D. Alexiev, B.D. Nener, J. Appl. Phys. 78, 3686 (1995)CrossRefGoogle Scholar
  7. 7.
    M. Toulemonde, Nucl. Instrum. Methods Phys. Res. Sect. B 156(1), 1 (1999)CrossRefGoogle Scholar
  8. 8.
    N.V. Doan, G. Martin, Phys. Rev. B 67, 134107 (2003)CrossRefGoogle Scholar
  9. 9.
    M. McPherson, J. Opt. A: Pure Appl. Opt. 7, S325 (2005)CrossRefGoogle Scholar
  10. 10.
    V.R. Pillai, S.K. Khamari, V.K. Dixit, T. Ganguli, S. Kher, S.M. Oak, Nuclear Nucl. Instrum. Methods A 685, 41 (2012)CrossRefGoogle Scholar
  11. 11.
    X. Duan, C. Niu, V.J. Chen, J.W. Parce, S. Empedocles, J.L. Goldman, Nature 425, 274 (2003)CrossRefGoogle Scholar
  12. 12.
    Y. Chen, L. Wei, G. Zhang, J. Jiao Nanoscale Res. Lett. 7, 516 (2012)CrossRefGoogle Scholar
  13. 13.
    K.M. Abhirami, P. Matheswaran, B. Gokul, R. Sathyamoorthy, K. Asokan, Appl. Phys. A 111(4), 1175 (2013)CrossRefGoogle Scholar
  14. 14.
    M. Seita, A.S. Sologubenko, F. Fortuna, M.J. Süess, R. Spolenak, Acta Mater. 64, 297 (2014)CrossRefGoogle Scholar
  15. 15.
    A.G. Bishay, S. El-Gamal, A. c. conductance of γ-irradiated discontinuous platinum films. J. Mater. Sci. Mater. Electron. 24(7), 2619 (2013)CrossRefGoogle Scholar
  16. 16.
    M.V. Kumar, S. Verma, V. Shobha, B. Jayashree, D. Kanjilal, R. Ramani, S. Krishnaveni, J. Mater. Sci. Res. 3(3), 24.15 (2014)Google Scholar
  17. 17.
    M. Kumari, P. Rana, R.P. Chauhan, Nucl. Instrum. Methods A 753, 116–120 (2014)CrossRefGoogle Scholar
  18. 18.
    X. Xu, X. Fang, H. Zeng, T. Zhai, Y. Bando, D. Golberg, Sci. Adv. Mater. 2, 273 (2010)CrossRefGoogle Scholar
  19. 19.
    R.P. Chauhan, D. Gehlawat, A. Kaur, P. Rana, Radiat. Eff. Defect Solids 168(7–8), 484 (2013)CrossRefGoogle Scholar
  20. 20.
    N. Kumar, R. Kumar, S. Kumar, S.K. Chakarvarti, J. Mater. Sci. Mater. Electron. 25, 3537 (2014)CrossRefGoogle Scholar
  21. 21.
    B.D. Cullity, Elements of X-Ray Diffraction, 2nd edn. (Addison-Wesley Publishing Company, USA, 1978)Google Scholar
  22. 22.
    C. Barret, T.B. Massalski, Structure of Metals: Crystallographic Methods, Principles and Data, 3rd edn. (Petgamon Press, Oxford, 1980), p. 202Google Scholar
  23. 23.
    G.B. Harris, Philos. Mag. 43, 133 (1952)Google Scholar
  24. 24.
    T.W. Cornelius, J. Brotz, N. Chtanko, D. Dobrev, G. Miehe, R. Newmann, M.E.T. Molares, Nanotechnology 16, S246 (2005)CrossRefGoogle Scholar
  25. 25.
    D. Gehlawat, R.P. Chauhan, Mater. Chem. Phys. 145(1), 60 (2014)CrossRefGoogle Scholar
  26. 26.
    B.D. Cullity, S.R. Stock, Elements of X-ray diffraction, 3rd edn. (Prentice-Hall, USA, 2001), pp. 167–171Google Scholar
  27. 27.
    A.R. Stokes, A.J.C. Wilson, Proc. Phys. Soc. Lond. 56, 174 (1944)CrossRefGoogle Scholar
  28. 28.
    G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953)CrossRefGoogle Scholar
  29. 29.
    T. Watanabe, J. Mater. Sci. 46, 4095 (2011)CrossRefGoogle Scholar
  30. 30.
    A.M.S. Galante, L.L. Campos, Characterization of polycarbonate dosimeter for gamma-radiation dosimetry. in Proceedings of Third European IPRA Congress, Helsinki, Finland (2010)Google Scholar
  31. 31.
    R.P. Chauhan, D. Gehlawat, A. Kaur, J. Exp. Nanosci. 9(8), 871 (2012)CrossRefGoogle Scholar
  32. 32.
    J. Tauc, A. Menth, Optical processes in solids. J. Non-Cryst. Solids 8, 569 (1972)CrossRefGoogle Scholar
  33. 33.
    G.V. Parkash, R. Singh, A. Kumar, R.K. Mishra, Mater. Lett. 60, 1744 (2006)CrossRefGoogle Scholar
  34. 34.
    S.C. Singh, K.R. Swarnkar, R. Gopal, Bull. Mater. Sci. 33, 21 (2010)CrossRefGoogle Scholar
  35. 35.
    K.M. Abhirami, R. Sathyamoorthy, K. Asokan, Radiat. Phys. Chem. 91, 35 (2013)CrossRefGoogle Scholar
  36. 36.
    Z. Zhang, K. Yao, Y. Liu, C. Jin, X. Liang, Q. Chen, L.M. Peng, Adv. Funct. Mater. 17(14), 2478 (2007)CrossRefGoogle Scholar
  37. 37.
    A. Miotello, R. Kelly, M. Dapor, Nucl. Instrum. Methods B 141, 16 (1998)CrossRefGoogle Scholar
  38. 38.
    H. Ullmaier, W. Schilling, Phys. Mod. Mater. 1, 301 (1980)Google Scholar
  39. 39.
    R.E. Smallman, A.H.W. Ngan, Physical Metallurgy and Advanced Materials, 7th edn. (Butterworth-Heinemann, 2007)Google Scholar
  40. 40.
    P. Kofstad, T. Norby, Defects and Transport in Crystalline Solids (University of Oslo, Oslo, 2007)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of TechnologyKurukshetraIndia

Personalised recommendations