Advertisement

Novel-approach for fabrication of CdS thin films for photoelectrochemical solar cell application

  • Kishorkumar V. Khot
  • Sawanta S. Mali
  • Rohini R. Kharade
  • Rahul M. Mane
  • Pramod S. Patil
  • Chang Kook Hong
  • Jin Hyeok Kim
  • Jaeyeong Heo
  • Popatrao N. Bhosale
Article

Abstract

In present report, we have successfully synthesized nanocrystalline nanosheet-like CdS thin films on ultrasonically cleaned bare and FTO-coated glass substrates by using self-organized arrested precipitation technique. The effect of annealing on opto-structural, morphological and electrical properties were studied by using UV–Vis–NIR spectroscopy, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) equipped with energy dispersive spectroscopy (EDS) analyzer, X-ray photoelectron spectroscopy (XPS), electrical conductivity and thermoelectric power measurement. The UV–Vis–NIR studies revealed that band gap energy is varied from 2.23–2.05 and 2.00 eV with increase in deposition time and post annealing temperature (373 K), respectively. Also, optical absorption data indicates transition mechanism type is direct and allowed. The XRD study revealed that films are nanocrystalline in nature and pure cubic crystal structure with crystallite size ranging from 61 to 86 nm. FESEM micrographs confirm material is well adherent, pin-hole free over entire substrate surface. XPS shows presence of Cd2+ and S2− ions and EDS confirms Stoichiometric film formation. Finally as deposited and annealed (372 K for 1 h) thin films were tested for their photoelectrochemical properties. PEC results revealed that the annealed CdS thin film shows 0.846 mA cm−2 short current density (J sc ) with 0.10 % highest conversion efficiency (η).

Keywords

Post Annealing Treatment Cadmium Sulfate Annealed Thin Film Entire Substrate Surface Copper Indium Gallium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

One of author Kishorkumar V. Khot is very much thankful to Department of Science and Technology (DST), New Delhi for providing DST-INSPIRE fellowship for financial support (Registration No. IF130751). This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2009-0094055).

References

  1. 1.
    Y. Tak, S.J. Hong, J.S. Lee, K. Yong, J. Mater. Chem. 19, 5945 (2009)CrossRefGoogle Scholar
  2. 2.
    M. Yuan, D.B. Mitzi, Dalton Trans. 31, 6078 (2009)Google Scholar
  3. 3.
    H. Mathieu, T. Richard, J. Allegre, P. Lefebvre, G. Arnaud, J. Appl. Phys. 77, 287 (1995)CrossRefGoogle Scholar
  4. 4.
    M.A. Barote, A.A. Yadav, E.U. Masumdar, Physica B 406, 1865 (2011)CrossRefGoogle Scholar
  5. 5.
    S.A. Jassim, A.A. Zumaila, G.A. Waly, Results Phys. 3, 173 (2013)CrossRefGoogle Scholar
  6. 6.
    N. Bao, L. Shen, T. Takata, K. Domen, A. Gupta, K. Yanagisawa, C.A. Grimes, J. Phys. Chem. C 111, 17527 (2007)CrossRefGoogle Scholar
  7. 7.
    S.G. Hickey, D.J. Riley, E.J. Tull, J. Phys. Chem. B 104, 7623 (2000)CrossRefGoogle Scholar
  8. 8.
    T. Hirai, K. Suzuki, I. Komasawa, J. Colloid Interface Sci. 244, 262 (2001)CrossRefGoogle Scholar
  9. 9.
    J. Zhai, L. Wang, D. Wang, H. Li, Y. Zhang, D.Q. He, T. Xie, ACS Appl. Mater. Interfaces 3, 2253 (2011)CrossRefGoogle Scholar
  10. 10.
    Y. Wu, T. Tamaki, T. Volotinen, L. Belova, K.V. Rao, J. Phys. Chem. Lett. 1, 89 (2010)CrossRefGoogle Scholar
  11. 11.
    S. Panigrahi, D. Bas, J. Colloid Interface Sci. 10, 364 (2011)Google Scholar
  12. 12.
    S. Girish Kumar, K.S.R. Koteswara Rao, Energy Environ. Sci. 7, 45 (2014)CrossRefGoogle Scholar
  13. 13.
    J. Heo, H. Ahn, R. Lee, Y. Han, D. Kim, Sol. Energy Mater. Sol. Cells 75, 193 (2003)CrossRefGoogle Scholar
  14. 14.
    C.J. Hibberd, K. Ernits, M. Kaelin, U. Muller, A.N. Tiwari, Prog. Photovolt. Res. Appl. 16, 585 (2008)Google Scholar
  15. 15.
    K. Subbaramaiah, V.S. Raja, Sol. Energy Mater. Sol. Cells 1, 32 (1994)Google Scholar
  16. 16.
    P. O’Brien, Chemtronics 5, 61 (1991)Google Scholar
  17. 17.
    P.K.M. Bandaranayake, P.V.V. Jayaweera, K. Tennakone, Sol. Energy Mater. Sol. Cells 76, 57 (2003)CrossRefGoogle Scholar
  18. 18.
    S. Ray, R. Banerjee, A.K. Barua, J. Appl. Phys. 19, 1889 (1980)CrossRefGoogle Scholar
  19. 19.
    J.N. Ximello-Quiebras, G. Contreras-Puente, J. Aguilar-Herna, G. ndez, A. Santana-Rodriguez, R. Arias-Carbajal, Sol. Energy Mater. Sol. Cells 82, 263 (2004)CrossRefGoogle Scholar
  20. 20.
    B.S. Moon, J.H. Lee, H. Jung, Thin Solid Films 299, 511 (2006)Google Scholar
  21. 21.
    N.B. Pawar, S.S. Mali, M.M. Salunkhe, R.M. Mane, P.S. Patil, P.N. Bhosale, New J. Chem. 36, 1807 (2012)CrossRefGoogle Scholar
  22. 22.
    M.M. Salunkhe, R.R. Kharade, S.D. Kharade, S.S. Mali, P.S. Patil, P.N. Bhosale, Mater Res. Bull. 47, 3860 (2012)CrossRefGoogle Scholar
  23. 23.
    M. Gannouni, I.B. Assaker, R. Chtourou, Superlattices Microstruct. 61, 22 (2013)CrossRefGoogle Scholar
  24. 24.
    W. Ostwald, Lehrbuch der Allgemeinen Chemie, vol. 2, Part 1 (Leipzig, Germany, 1896)Google Scholar
  25. 25.
    K.V. Khot, S.S. Mali, N.B. Pawar, R.M. Mane, V.V. Kondalkar, V.B. Ghanwat, P.S. Patil, C.K. Hong, J.H. Kim, J. Heo, P.N. Bhosale, J. Mater. Sci. Mater. Electron. 25, 3762 (2014)CrossRefGoogle Scholar
  26. 26.
    K.V. Khot, S.S. Mali, N.B. Pawar, R.R. Kharade, R.M. Mane, V.V. Kondalkar, P.B. Patil, P.S. Patil, C.K. Hong, J.H. Kim, J. Heo, P.N. Bhosale, New J. Chem. (2014). doi: 10.1039/c4nj01319k
  27. 27.
    S. Mahanty, D. Basak, F. Rueda, M. Leon, J. Electron Mat. 28, 559 (1999)CrossRefGoogle Scholar
  28. 28.
    M.M. Abbasa, A.A.M. Shehab, N.A. Hassan, A.K.A. Samuraee, Thin Solid Films 519, 4917 (2011)CrossRefGoogle Scholar
  29. 29.
    S.D. Kharade, N.B. Pawar, S.S. Mali, C.K. Hong, P.S. Patil, M.G. Gang, J.H. Kim, P.N. Bhosale, J. Mater. Sci. 48, 7300 (2013)CrossRefGoogle Scholar
  30. 30.
    C. Lal, I.P. Jain, Int. J. Hydrog. Energy 37, 3792 (2012)CrossRefGoogle Scholar
  31. 31.
    B.M.M. Rakib, G. Durand, J. Sol. Energy Mater. Sol. Cells 86, 399 (2005)CrossRefGoogle Scholar
  32. 32.
    V.P. Singh, R.S. Singh, G.W. Thompson, V. Jayaraman, S. Sanagapalli, V.K. Rangari, J. Sol. Energy Mater. Sol. Cells 81, 293 (2004)CrossRefGoogle Scholar
  33. 33.
    J.H. Lee, J. Thin Solid Films 515, 6089 (2007)CrossRefGoogle Scholar
  34. 34.
    A.M. Shehab, M.M. Abbas, N.A. Hassan, J. Coll. Educ. 12, 204 (2010)Google Scholar
  35. 35.
    P.K. Gosh, M.K. Miltra, K.K. Chattopadhyay, Nanotechnology 7, 107 (2005)Google Scholar
  36. 36.
    I.C. Ndukwe, Niger. J. Phys. 7, 10 (1998)Google Scholar
  37. 37.
    M.G. Sandoval-Paz, M. Sotelo-Lerma, J.J. Valenzuela-Jauregui, M. FloresAcosta, R. Ramirez-Bon, Thin Solid Films 5, 472 (2005)Google Scholar
  38. 38.
    S.V. Patil, R.M. Mane, N.B. Pawar, S.D. Kharade, S.S. Mali, P.S. Patil, G.L. Agawane, J.H. Kim, P.N. Bhosale, J. Mater. Sci. Mater. Electron. 24, 4669 (2013)CrossRefGoogle Scholar
  39. 39.
    E. Guneri, C. Ulutas, F. Kirmizigul, G. Altindemir, F. Gode, C. Gumus, Appl. Surf. Sci. 257, 1189 (2010)CrossRefGoogle Scholar
  40. 40.
    Z. Sun, S. Liufu, L. Chen, Dalton Trans. 39, 10883 (2010)CrossRefGoogle Scholar
  41. 41.
    S.S. Mali, C.A. Betty, P.N. Bhosale, P.S. Patil, Electrochim. Acta 59, 113 (2012)CrossRefGoogle Scholar
  42. 42.
    C. Garza, S. Shaji, A. Arato, E.P. Tijerina, G.A. Castillo, T.K. Das Roy, B. Krishnan Sol. Energy Mater. Sol. Cells. 95, 2001 (2011)Google Scholar
  43. 43.
    N.B. Pawar, S.S. Mali, S.D. Kharade, M.G. Gang, P.S. Patil, J.H. Kim, C.K. Hong, P.N. Bhosale, Curr. Appl. Phys. 14, 508 (2014)CrossRefGoogle Scholar
  44. 44.
    Z. Zang, A. Nakamura, J. Temmyo, Opt. Express 21, 11448 (2013)CrossRefGoogle Scholar
  45. 45.
    Z. Zang, A. Nakamura, J. Temmyo, Mater. Lett. 92, 188 (2013)CrossRefGoogle Scholar
  46. 46.
    S.B. Ambade, R.S. Mane, S.S. Kale, S.H. Sonawane, A.V. Shaikh, S.H. Han, Appl. Surf. Sci. 253, 2123 (2006)CrossRefGoogle Scholar
  47. 47.
    S.S. Hongmei, Y. Gao, D. Qin, J. Chen, J. Mater. Chem. 22, 19207 (2012)CrossRefGoogle Scholar
  48. 48.
    S. Ikeda, R. Kamai, S.M. Lee, T. Yagi, T. Harada, M. Matsumura, Sol. Energy Mater. Sol. Cells 95, 1446 (2011)CrossRefGoogle Scholar
  49. 49.
    S.A. Vanalakar, S.S. Mali, R.C. Pawar, N.L. Tarwal, A.V. Moholkar, J.A. Kim, Y.B. Kwon, J.H. Kim, P.S. Patil, Electrochim. Acta 56, 2762 (2011)CrossRefGoogle Scholar
  50. 50.
    J. Lee, Curr. Appl Phys. 11, 103 (2011)CrossRefGoogle Scholar
  51. 51.
    R.S. Mane, B.R. Sankapal, C.D. Lokhande, Mater. Chem. Phys. 60, 196 (1999)CrossRefGoogle Scholar
  52. 52.
    V.D. Das, P.G. Ganesan, Mater. Chem. Phys. 57, 57 (1998)CrossRefGoogle Scholar
  53. 53.
    T.P. Chou, Q. Zhang, G.E. Fryxell, G. Cao, Adv. Mater. 19, 2588 (2007)CrossRefGoogle Scholar
  54. 54.
    Q. Zhang, T.P. Chou, B. Russo, S.A. Jenekhe, G. Cao, Angew. Chem. Int. Ed. 47, 2402 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Kishorkumar V. Khot
    • 1
  • Sawanta S. Mali
    • 2
  • Rohini R. Kharade
    • 1
  • Rahul M. Mane
    • 1
  • Pramod S. Patil
    • 3
  • Chang Kook Hong
    • 2
  • Jin Hyeok Kim
    • 4
  • Jaeyeong Heo
    • 5
  • Popatrao N. Bhosale
    • 1
  1. 1.Materials Research Laboratory, Department of ChemistryShivaji UniversityKolhapurIndia
  2. 2.Polymer Energy Materials Laboratory, Advanced Chemical Engineering DepartmentChonnam National UniversityGwangjuSouth Korea
  3. 3.Thin Film Materials Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia
  4. 4.Photonic and Electronic Thin Film Laboratory, Department of Materials Science and EngineeringChonnam National UniversityGwangjuSouth Korea
  5. 5.Nanodevices and Materials for Energy Lab, Department of Materials Science and EngineeringChonnam National UniversityGwangjuSouth Korea

Personalised recommendations