Electromagnetic properties and microwave-absorption properties of BaTiO3/BaZn2Fe16O27 composite in 2–18 GHz



BaTiO3/BaZn2Fe16O27 composites were prepared by traditional solid state method, BaTiO3 nano particles were coated around with the BaZn2Fe16O27 ferrite with hexagonal plate structure. The prepared composite particles were characterized with X-ray diffraction, scanning electron microscopy, and vector network analyzer. With the increase of BaTiO3 content, the complex permittivity of the composites increases, while the complex permeability decreases; The sharp peaks of the magnetic loss appear at 8.72 and 14.0 GHz, and the peak values are 1.64 and 0.69, respectively, when the mole ratio of BaZn2Fe16O27/BaTiO3 is 10:5; The matching thickness of BaTiO3/BaZn2Fe16O27 composites is 2.5 mm when the mole ratio of BaZn2Fe16O27/BaTiO3 is 10:5, and the minimum reflection loss reaches −33.49 dB at 8.56 GHz; There are more than one loss peak appeared in the reflection loss cures, and the effective absorption frequency (RL < −10 dB) ranges from 7.92 to 14.96 GHz with a thickness of 3 mm.


Ferrite BaTiO3 CoFe2O4 Complex Permittivity Reflection Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by the National Natural Science Foundation (51202111), Natural Science Foundation of Jiangsu Province (14KJB430019), Natural Science Foundation of Jiangsu Provincial Universities (BK20141000), and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).


  1. 1.
    A.L. Xia, S.K. Liu, C.G. Jin, S.B. Su, J. Mater. Sci. Mater. Electron. 23, 4166 (2013). doi: 10.1007/s10854-013-1377-x CrossRefGoogle Scholar
  2. 2.
    A. Mukhtar, R. Grössinger, M. Kriegisch, F. Kubel, M.U. Rana, Curr. Appl. Phys. 12, 1413 (2012). doi: 10.1016/j.cap.2012.02.038 CrossRefGoogle Scholar
  3. 3.
    P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C.J. Muthamizhchelvan, J. Alloys. Compd. 537, 203 (2012). doi: 10.1016/j.jallcom.2012.05.067 CrossRefGoogle Scholar
  4. 4.
    X.G. Huang, J. Zhang, S.R. Xiao, G.S. Chen, J. Am. Ceram. Soc. 97(5), 1363–1366 (2014). doi: 10.1111/jace.12909
  5. 5.
    S.R. Jigajeni, M.M. Sutar, S.M. Salunkhe, P.B. Joshi, J. Mater. Sci. Mater. Electron. 23, 1678 (2012). doi: 10.1007/s10854-012-0646-4 CrossRefGoogle Scholar
  6. 6.
    S. Sharma, V. Singh, R.K. Kotnala, RK Dwivedi, J. Mater. Sci. Mater. Electron. 25, 1915 (2014). doi: 10.1007/s10854-014-1820-7 CrossRefGoogle Scholar
  7. 7.
    X.G. Huang, J. Zhang, S.R. Xiao, T.Y. Sang, G.S. Chen, Mater Lett. 124, 126–128 (2014). doi: 10.1016/j.matlet.2014.03.049
  8. 8.
    V. Corral-Flores, D. Bueno-Baque´s, R.F. Ziolo, Acta. Mater. 58, 764 (2010). doi: 10.1016/j.actamat.2009.09.054 CrossRefGoogle Scholar
  9. 9.
    V.V. Shvartsman, F. Alawneh, P. Borisov, Smart. Mater. Struct. 20, 075006 (2011). doi: 10.1088/0964-1726/20/7/075006
  10. 10.
    R.S. Devan, Y.R. Ma, B.K. Chougule, Mater. Chem. Phys. 115, 263 (2009). doi: 10.1016/j.matchemphys.2008.11.059 CrossRefGoogle Scholar
  11. 11.
    G.V. Duong, R. Groessinger, J. Magn. Magn. Mater. 316, 624 (2007). doi: 10.1016/j.matchemphys.2008.11.059 CrossRefGoogle Scholar
  12. 12.
    L.V. Leonel, A. Righi, W.N. Mussel, J.B. Silva, N.D.S. Mohallem, Ceram. Int. 37, 1259 (2011). doi: 10.1016/j.ceramint.2011.01.017 CrossRefGoogle Scholar
  13. 13.
    P.K. Roy, J. Bera, Mater. Chem. Phys. 132(2–3), 354 (2012). doi: 10.1016/j.matchemphys.2011.11.031 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.College of Materials and Science and EngineeringNanjing Tech UniversityNanjingChina

Personalised recommendations