Performance improvement of pentacene organic field-effect transistor through introducing polymer buffer layers

  • Lufeng Shu
  • Wei Shi
  • Wei Huang
  • Junsheng Yu


Pentacene organic field-effect transistors (OFETs) employing poly(methyl methacrylate) (PMMA), polystyrene and polyvinylidene fluoride as the electrode buffer layers by simple spray-coating fabrication process were systematically investigated. Significant performance enhancement of the OFETs was obtained. By analyzing the morphologies of pentacene films grown on gold electrodes and the electrical characteristics of these OFETs, the performance improvement was attributed to the uniform and hydrophobic properties of polymer surface, leading to a remarkable reduction of contact resistance at the pentacene/electrodes interface. Moreover, the results showed that the device employing PMMA as the electrode buffer layer exhibited the highest hole mobility of 0.59 cm2/Vs, which was almost five times of the control one. Such effect was ascribed to the optimal surface energy and appropriate dielectric constant of PMMA, which were favorable for the growth of pentacene crystal and responsible for the highest performance of OFET using PMMA as the electrode buffer layer.


PMMA PVDF Buffer Layer Contact Resistance Spray Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was funded by the National Science Foundation of China (NSFC) (Grant No. 61177032), the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2010Z004), and the Foundation of Innovation Groups of NSFC (No. 61421002).


  1. 1.
    D. Khim, H. Han, K.J. Baeg, J. Kim, S.W. Kwak, D.Y. Kim, Y.Y. Noh, Adv. Mater. 25, 4302 (2013)CrossRefGoogle Scholar
  2. 2.
    C. Kim, A. Facchetti, T.J. Marks, Science 318, 76 (2007)CrossRefGoogle Scholar
  3. 3.
    L. Zhang, H. Wang, Y. Zhao, Y. Guo, W. Hu, G. Yu, Y. Liu, Adv. Mater. 25, 5455 (2013)CrossRefGoogle Scholar
  4. 4.
    T. Sekitani, U. Zschieschang, H. Klauk, T. Someya, Nat. Mater. 9, 1015 (2010)CrossRefGoogle Scholar
  5. 5.
    B. Kumar, B.K. Kaushik, Y.S. Negi, J. Mater. Sci. Mater. Electron. 25, 1 (2014)CrossRefGoogle Scholar
  6. 6.
    X. Sun, L. Zhang, C. Di, Y. Wen, Y. Guo, Y. Zhao, G. Yu, Y. Liu, Adv. Mater. 23, 3128 (2011)CrossRefGoogle Scholar
  7. 7.
    F. Liscio, C. Albonetti, K. Broch, A. Shehu, S.D. Quiroga, L. Ferlauto, C. Frank, S. Kowarik, R. Nervo, A. Gerlach, S. Milita, F. Schreiber, F. Biscarini, ACS Nano 7, 1257 (2013)CrossRefGoogle Scholar
  8. 8.
    B. Zhou, P. Huang, C. Liu, J. Mater. Sci. Mater. Electron. (2014). doi: 10.1007/s.1085401420820 Google Scholar
  9. 9.
    K. Baeg, D. Khim, J. Kim, H. Han, S. Jung, T. Kim, M. Kang, A. Facchetti, S. Hong, D. Kim, Y. Noh, ACS Appl. Mater. Inter. 4, 6176 (2012)CrossRefGoogle Scholar
  10. 10.
    M. Kano, T. Minari, K. Tsukagoshi, Appl. Phys. Lett. 94, 143304 (2009)CrossRefGoogle Scholar
  11. 11.
    Y. Wang, R. Kumashiro, R. Nouchi, N. Komatsu, K. Tanigak, J. Appl. Phys. 105, 124912 (2009)CrossRefGoogle Scholar
  12. 12.
    Y.Y. Noh, N. Zhao, M. Caironi, H. Sirringhaus, Nat. Nanotechnol. 2, 784 (2007)CrossRefGoogle Scholar
  13. 13.
    M. Weis, J. Lin, D. Taguchi, T. Manaka, M. Iwamoto, Appl. Phys. Lett. 97, 263304 (2010)CrossRefGoogle Scholar
  14. 14.
    G.C. Schmidt, D. Höft, M. Bhuie, K. Haase, M. Bellmann, F. Haidu, D. Lehmann, D.R. Zahn, A.C. Hübler, Appl. Phys. Lett. 103, 113302 (2013)CrossRefGoogle Scholar
  15. 15.
    K. Fujita, T. Yasuda, T. Tsutsui, Appl. Phys. Lett. 82, 4373 (2003)CrossRefGoogle Scholar
  16. 16.
    G.L. Whiting, A.C. Arias, Appl. Phys. Lett. 95, 253302 (2009)CrossRefGoogle Scholar
  17. 17.
    Y. Zhang, P. Zalar, C. Kim, S. Collins, G. Bazan, T.Q. Nguyen, Adv. Mater. 24, 4255 (2012)CrossRefGoogle Scholar
  18. 18.
    X. Yu, J. Yu, J. Zhou, J. Huang, Y. Jiang, Appl. Phys. Lett. 99, 063306 (2011)CrossRefGoogle Scholar
  19. 19.
    S.Y. Park, Y.H. Noh, H.H. Lee, Appl. Phys. Lett. 88, 113503 (2006)CrossRefGoogle Scholar
  20. 20.
    J.H. Kim, S.W. Yun, B.K. An, Y.D. Han, S.J. Yoon, J. Joo, S.Y. Park, Adv. Mater. 25, 719 (2013)CrossRefGoogle Scholar
  21. 21.
    C.A. Di, Y.Q. Liu, G. Yu, D.B. Zhu, Acc. Chem. Res. 42, 1573 (2009)CrossRefGoogle Scholar
  22. 22.
    T.S. Huang, Y.K. Su, P.C. Wang, Appl. Phys. Lett. 91, 092116 (2007)CrossRefGoogle Scholar
  23. 23.
    W. Shi, J. Yu, W. Huang, X. Yu, Y. Zheng, Appl. Phys. Lett. 102, 111607 (2013)CrossRefGoogle Scholar
  24. 24.
    Y. Zheng, R. Wu, W. Shi, Z. Guan, J. Yu, Sol. Energ. Mat. Sol. C. 111, 200 (2013)CrossRefGoogle Scholar
  25. 25.
    Y. Zheng, S. Li, W. Shi, J. Yu, Nanoscale Res. Lett. 9, 145 (2014)CrossRefGoogle Scholar
  26. 26.
    Y. Zheng, S. Li, X. Yu, D. Zheng, J. Yu, RSC Adv. 4, 16464 (2014)CrossRefGoogle Scholar
  27. 27.
    A. Venugopal, L. Colombo, E.M. Vogel, Appl. Phys. Lett. 96, 013512 (2010)CrossRefGoogle Scholar
  28. 28.
    D.J. Gundlach, L. Zhou, J.A. Nichols, T.N. Jackson, P.V. Necliudov, M.S. Shur, J. Appl. Phys. 100, 024509 (2006)CrossRefGoogle Scholar
  29. 29.
    C.W. Chu, S.H. Li, C.W. Chen, V. Shrotriya, Y. Yang, Appl. Phys. Lett. 87, 193508 (2005)CrossRefGoogle Scholar
  30. 30.
    S.J. Jung, T.K. Lutz, J.J. Boland, J. Vac. Sci. Technol. A 29, 051403 (2011)CrossRefGoogle Scholar
  31. 31.
    W.Y. Chou, C.W. Kuo, H.L. Cheng, Y.R. Chen, F.C. Tang, F.Y. Yang, D.Y. Shu, C.C. Liao, Appl. Phys. Lett. 89, 112126 (2006)CrossRefGoogle Scholar
  32. 32.
    S.Y. Yang, K. Shin, C.E. Park, Adv. Funct. Mater. 15, 1806 (2005)CrossRefGoogle Scholar
  33. 33.
    W. Huang, J. Yu, X. Yu, W. Shi, Org. Electron. 14, 3453 (2013)CrossRefGoogle Scholar
  34. 34.
    Z. Ahmad, M.A. Silaghi, Dielectric material, 1st edn. (Intech, Croatia, 2012)Google Scholar
  35. 35.
    D. Zielke, A.C. Hübler, U. Hahn, N. Brandt, M. Bartzsch, U. Fügmann, T. Fischer, J. Veres, S. Ogier, Appl. Phys. Lett. 87, 123508 (2005)CrossRefGoogle Scholar
  36. 36.
    J.S. Shang, P.G. Huang, J. Appl. Phys. 107, 113302 (2010)CrossRefGoogle Scholar
  37. 37.
    G. Witte, C. Wöll, J. Mater. Res. 19, 1889 (2004)CrossRefGoogle Scholar
  38. 38.
    W.S. Hu, Y.T. Tao, Y.J. Hsu, D.H. Wei, Y.S. Wu, Langmuir 21, 2260 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Optoelectronic InformationUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations