Improvements in the performances of In–Ga–Zn–O thin-film transistors on glass substrates by annealing treatment

  • Chong Liu
  • Min Wei
  • Zhuo Jia
  • Yi-Feng Deng
  • Hao Liu
  • Hong Deng


Thin film transistors (TFTs) with amorphous InGaZnO (IGZO) channel layer were fabricated by radio frequency magnetron sputtering technique. The IGZO films show optical transparency over 80 % both before annealing and after annealing. It was found that performances of transistors with IGZO thin films annealed in air at 450 °C were significantly improved. Through annealing treatment, Saturation current of TFTs increased from 2.8 to 181 μA at bias of VDS = 20, VGS = 20 V, and saturation mobility is up from 1.49 to 15.8 cm2 V−1 s−1. In addition, X-ray photoelectric spectroscopy (XPS) was performed to provide elemental information on the surface of the IGZO films before and after annealing. O1s XPS spectra of unannealed and annealed IGZO films indicated oxygen vacancy concentration decreased by annealing treatment.


Threshold Voltage Annealing Treatment Indium Oxide Thin Film Transistor Channel Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R.A. Street, Adv. Mater. 21, 2007 (2009)CrossRefGoogle Scholar
  2. 2.
    M.J. Powell, Appl. Phys. Lett. 43, 597 (1983)CrossRefGoogle Scholar
  3. 3.
    J.K. Jeong, Semicond. Sci. Technol. 26, 034008 (2011)CrossRefGoogle Scholar
  4. 4.
    T. Serikawa, F. Omata, IEEE Trans. Electron Devices. 49, 820 (2002)CrossRefGoogle Scholar
  5. 5.
    K. Nomura, A. Takagi, T. Kamiya et al., Nature (London) 432, 488 (2004)CrossRefGoogle Scholar
  6. 6.
    T. Kamiya, K. Nomura, H. Hosono et al., Sci. Technol. Adv. Mater. 11, 044305 (2010)CrossRefGoogle Scholar
  7. 7.
    H. Liu, R. Sun, Appl. Phys. Lett. 92, 063304 (2008)CrossRefGoogle Scholar
  8. 8.
    H.-H. Lu, H.-C. Ting, T.-H. Shih et al., SID Symp. Digest Tech. Papers. 41, 1136 (2010)CrossRefGoogle Scholar
  9. 9.
    J.-S. Park, T. Kim, D. Stryakhilev et al., Appl. Phys. Lett. 95, 013503 (2009)CrossRefGoogle Scholar
  10. 10.
    H. Yabuta, M. Sano, K. Abe et al., Appl. Phys. Lett. 89, 112123 (2006)CrossRefGoogle Scholar
  11. 11.
    Y. Kikuchi, K. Nomura, H. Yanagi et al., Thin Solid Films 518, 3017 (2010)CrossRefGoogle Scholar
  12. 12.
    K. Nomura, T. Kamiya, H. Hosono et al., Appl. Phys. Lett. 93, 192107 (2008)CrossRefGoogle Scholar
  13. 13.
    K.K. Banger, Y. Yamashita, K. Mori et al., Nature Mater. 10, 45 (2011)CrossRefGoogle Scholar
  14. 14.
    W.F. Chung, T.C. Chang, H.W. Li et al., Electrochem. Solid-State Lett. 14, H114 (2011)CrossRefGoogle Scholar
  15. 15.
    O. Bierwagen, J.S. Speck, Appl. Phys. Lett. 97, 072103 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Chong Liu
    • 1
  • Min Wei
    • 1
  • Zhuo Jia
    • 1
  • Yi-Feng Deng
    • 1
  • Hao Liu
    • 1
  • Hong Deng
    • 1
  1. 1.State Key Laboratory of Electronic Thin Films and Integrated DevicesUESTCChengduPeople’s Republic of China

Personalised recommendations