Advertisement

Non-parabolicity and inter-valley transitions within zinc-blende indium nitride

  • Walid A. Hadi
  • Poppy Siddiqua
  • Stephen K. O’Leary
Article

Abstract

Within the framework of an ensemble semi-classical three-valley Monte Carlo simulation approach, we examine how the character of the electron transport within zinc-blende indium nitride varies in response to changes in the non-parabolicity. All other material and band structural parameters are set to the nominal zinc-blende indium nitride values prescribed by Hadi et al. (J Appl Phys 113:113709, 2013). We find that while low non-parabolicities lead to a substantial number of transitions into the upper energy conduction band valleys, for non-parabolicity coefficients in excess of 3 eV\(^{-1}\), very few such transitions occur. Variations in the non-parabolicity are also noted to play an important role in shaping the form of the corresponding velocity-field characteristic. Correlations between the results are explored. How the relationship between the electron transport within zinc-blende indium nitride and its non-parabolicity may be exploited for device application purposes is commented upon.

Keywords

Electron Drift Velocity Polar Optical Phonon Average Electron Energy Applied Electric Field Strength Energy Conduction Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors gratefully acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada.

References

  1. 1.
    S. Ruffenach, M. Moret, O. Briot, B. Gil, Phys. Status Solidi A 207, 9 (2010)CrossRefGoogle Scholar
  2. 2.
    A. Yamamoto, Md.R. Islam, T.-T. Kang, A. Hashimoto, Phys. Status Solidi C 7, 1309 (2010)CrossRefGoogle Scholar
  3. 3.
    J. Kuzmik, A. Georgakilas, IEEE Trans. Electron. Devices 58, 720 (2011)CrossRefGoogle Scholar
  4. 4.
    J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, H. Lu, W.J. Schaff, Y. Saito, Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002)CrossRefGoogle Scholar
  5. 5.
    W.-J. Lai, S.-S. Li, C.-C. Lin, C.-C. Kuo, C.-W. Chen, K.-H. Chen, L.-C. Chen, Scr. Mater. 63, 653 (2010)CrossRefGoogle Scholar
  6. 6.
    P. Aliberti, Y. Feng, Y. Takeda, S.K. Shrestha, M.A. Green, G. Conibeer, J. Appl. Phys. 108, 094507 (2010)CrossRefGoogle Scholar
  7. 7.
    A.G. Bhuiyan, K. Sugita, A. Hashimoto, A. Yamamoto, IEEE J. Photovolt. 2, 276 (2012)CrossRefGoogle Scholar
  8. 8.
    J. Wu, J. Appl. Phys. 106, 011101 (2009)CrossRefGoogle Scholar
  9. 9.
    M. Goiran, M. Millot, J.-M. Poumirol, I. Gherasoiu, W. Walukiewicz, J. Leotin, Appl. Phys. Lett. 96, 052117 (2010)CrossRefGoogle Scholar
  10. 10.
    E. Baghani, S.K. O'Leary, Appl. Phys. Lett. 99, 262106 (2011)CrossRefGoogle Scholar
  11. 11.
    D.K. Ferry, Phys. Rev. B 12, 2361 (1975)CrossRefGoogle Scholar
  12. 12.
    S.K. O’Leary, B.E. Foutz, M.S. Shur, U.V. Bhapkar, L.F. Eastman, J. Appl. Phys. 83, 826 (1998)CrossRefGoogle Scholar
  13. 13.
    E. Bellotti, B.K. Doshi, K.F. Brennan, J.D. Albrecht, P.P. Ruden, J. Appl. Phys. 85, 916 (1999)CrossRefGoogle Scholar
  14. 14.
    B.E. Foutz, S.K. O’Leary, M.S. Shur, L.F. Eastman, J. Appl. Phys. 85, 7727 (1999)CrossRefGoogle Scholar
  15. 15.
    S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Appl. Phys. Lett. 87, 222103 (2005)CrossRefGoogle Scholar
  16. 16.
    S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Appl. Phys. Lett. 88, 152113 (2006)CrossRefGoogle Scholar
  17. 17.
    S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, J. Mater. Sci.: Mater. Electron. 17, 87 (2006)Google Scholar
  18. 18.
    S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, J. Mater. Sci.: Mater. Electron. 21, 218 (2010)Google Scholar
  19. 19.
    C.-Y. Yeh, Z.W. Lu, S. Froyen, A. Zunger, Phys. Rev. B 46, 10086 (1992)CrossRefGoogle Scholar
  20. 20.
    S. Strite, D. Chandrasekhar, D.J. Smith, J. Sariel, H. Chen, N. Teraguchi, H. Morkoç, J. Cryst. Growth 127, 204 (1993)CrossRefGoogle Scholar
  21. 21.
    D. Chandrasekhar, D.J. Smith, S. Strite, M.E. Lin, H. Morkoç, J. Cryst. Growth 152, 135 (1995)CrossRefGoogle Scholar
  22. 22.
    L.C. Jenkins, T.S. Cheng, C.T. Foxon, S.E. Hooper, J.W. Orton, S.V. Novikov, V.V. Tret’yakov, J. Vac. Sci. Technol. B 13, 1585 (1995)CrossRefGoogle Scholar
  23. 23.
    A. Yamamoto, Y. Yamauchi, M. Ohkubo, A. Hashimoto, J. Cryst. Growth 174, 641 (1997)CrossRefGoogle Scholar
  24. 24.
    A. Tabata, A.P. Lima, L.K. Teles, L.M.R. Scolfaro, J.R. Leite, V. Lemos, B. Schöttker, T. Frey, D. Schikora, K. Lischka, Appl. Phys. Lett. 74, 362 (1999)CrossRefGoogle Scholar
  25. 25.
    D.J. As, Microelectron. J. 40, 204 (2009)CrossRefGoogle Scholar
  26. 26.
    V.M. Polyakov, F. Schwierz, F. Fuchs, J. Furthmüller, F. Bechstedt, Appl. Phys. Lett. 94, 022102 (2009)CrossRefGoogle Scholar
  27. 27.
    W.A. Hadi, P.K. Guram, M.S. Shur, S.K. O’Leary, J. Appl. Phys. 113, 113709 (2013)CrossRefGoogle Scholar
  28. 28.
    W.A. Hadi, S.K. O'Leary, M.S. Shur, L.F. Eastman, Solid State Commun. 151, 874 (2011)CrossRefGoogle Scholar
  29. 29.
    W. Fawcett, A.D. Boardman, S. Swain, J. Phys. Chem. Solids 31, 1963 (1970)CrossRefGoogle Scholar
  30. 30.
    P. Lugli, D.K. Ferry, IEEE Trans. Electron. Devices 32, 2431 (1985)CrossRefGoogle Scholar
  31. 31.
    K. Seeger, Semiconductor Physics: An Introduction, 9th edn. (Springer, Berlin, 2004)CrossRefGoogle Scholar
  32. 32.
    S.K. O’Leary, B.E. Foutz, M.S. Shur, U.V. Bhapkar, L.F. Eastman, Solid State Commun. 105, 621 (1998)CrossRefGoogle Scholar
  33. 33.
    S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Solid State Commun. 118, 79 (2001)CrossRefGoogle Scholar
  34. 34.
    S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, J. Electron. Mater. 32, 327 (2003)CrossRefGoogle Scholar
  35. 35.
    S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Solid State Commun. 150, 2182 (2010)CrossRefGoogle Scholar
  36. 36.
    W.A. Hadi, M.S. Shur, S.K. O’Leary, J. Appl. Phys. 112, 033720 (2012)CrossRefGoogle Scholar
  37. 37.
    W.A. Hadi, S. Chowdhury, M.S. Shur, S.K. O’Leary, J. Appl. Phys. 112, 123722 (2012)CrossRefGoogle Scholar
  38. 38.
    W.A. Hadi, M.S. Shur, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 24, 2 (2013)Google Scholar
  39. 39.
    W.A. Hadi, R. Cheekoori, M.S. Shur, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 24, 807 (2013)Google Scholar
  40. 40.
    W.A. Hadi, M.S. Shur, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 24, 1624 (2013)Google Scholar
  41. 41.
    W.A. Hadi, M.S. Shur, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 25, 4675 (2014)Google Scholar
  42. 42.
    M.V. Fischetti, S.E. Laux, J. Appl. Phys. 80, 2234 (1996)CrossRefGoogle Scholar
  43. 43.
    M. Dyakonov, M.S. Shur, J. Appl. Phys. 84, 3726 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Walid A. Hadi
    • 1
  • Poppy Siddiqua
    • 1
  • Stephen K. O’Leary
    • 1
  1. 1.School of EngineeringThe University of British ColumbiaKelownaCanada

Personalised recommendations