(Sr1−xCax)WO4 and (Sr1−xCax)WO4:Eu3+ nanoparticles: synthesis and luminescence

  • Xiao-Juan Zhang


(Sr1−xCax)WO4 and (Sr1−xCax)WO4:0.05Eu3+ nanoparticles were synthesized by precipitation without using any complexing agent. The XRD patterns show that the obtained samples present a scheelite-type tetragonal structure without deleterious phase, and the increase of Ca concentration decreases the cell volume of materials. The TGA/DTA curve shows that the materials began to crystallize at temperature of 650 °C. The excitation and emission spectra of (Sr1−xCax)WO4 samples show bands originating from the charge transfers within WO4 2− groups. All (Sr1−xCax)WO4 samples show broad blue emission at room temperature. The excitation and emission spectra of (Sr1−xCax)WO4:0.05Eu3+ samples show bands originating from the charge transfers of Eu3+ ions. All (Sr1−xCax)WO4:0.05Eu3+ samples show prominent red emission at room temperature. The substitutions of Ca2+ ions to Sr2+ ions have obvious influence on luminescence properties. The intensity and quantum efficiency increase with the substituted Ca concentrations.


Scheelite CaWO4 SrWO4 Metal Tungstate BaWO4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported financially by Dr. Fund of Xi’an Polytechnic University (No. bs1341).


  1. 1.
    W.X. Wang, P.P. Yang, Z.Y. Cheng, Z.Y. Hou, C.X. Li, J. Lin, ACS Appl. Mater. Interfaces 3, 3921 (2011)CrossRefGoogle Scholar
  2. 2.
    Y.G. Yang, Mater. Sci. Eng. B 178, 807 (2013)CrossRefGoogle Scholar
  3. 3.
    B.K. Grandhe, V.R. Bandi, K. Jang, H.-S. Lee, D.-S. Shin, S.-S. Yi, J.-H. Jeong. Ceram. Int. 38, 6273 (2012)CrossRefGoogle Scholar
  4. 4.
    B. Liu, Y. Yang, X. Wang, Nanosci. Nanotech. Lett. 5, 1298 (2013)CrossRefGoogle Scholar
  5. 5.
    D.V. Sunitha, H. Nagabhushana, F. Singh, N. Dhananjaya, S.C. Sharma, B.M. Nagabhushana, C. Shivakumara, R.P.S. Chakradhar, Spectrochim. Acta A 93, 300 (2012)CrossRefGoogle Scholar
  6. 6.
    B.P. Singh, A.K. Parchur, R.S. Ningthoujam, A.A. Ansari, P. Singh, S.B. Rai, Dalton Trans. 43, 4779 (2014)CrossRefGoogle Scholar
  7. 7.
    E. Shafia, M. Bodaghi, S. Esposito, A. Aghaei, Ceram. Int. 40, 4697 (2014)CrossRefGoogle Scholar
  8. 8.
    Y.G. Yang, X.P. Wang, B. Liu, Nanosci. Nanotech. Lett. 5, 805 (2013)CrossRefGoogle Scholar
  9. 9.
    Y.G. Wang, L.L. Yang, Y.J. Wang, X.F. Wang, L.J. Wang, Ceram. Int. 39, 8481 (2013)CrossRefGoogle Scholar
  10. 10.
    Y.G. Yang, X.P. Wang, B. Liu, NANO 9, 1450008 (2014)CrossRefGoogle Scholar
  11. 11.
    H.L. Pan, M. Hojamberdiev, G.Q. Zhu, J. Mater. Sci. 47, 746 (2012)CrossRefGoogle Scholar
  12. 12.
    B. Gao, H.Q. Fan, X.J. Zhang, L.X. Song, Mater. Sci. Eng. B 177, 1126 (2012)CrossRefGoogle Scholar
  13. 13.
    S. Vidya, S. Solomon, J.K. Thomas, J. Mater. Sci. Mater. Electron. 25, 693 (2014)CrossRefGoogle Scholar
  14. 14.
    X.Y. Sun, X.G. Li, X.D. Sun, J. He, B.S. Wang, J. Mater. Sci. Mater. Electron. 25, 1647 (2014)CrossRefGoogle Scholar
  15. 15.
    X.P. Wang, B. Liu, Y.G. Yang, Opt. Laser Technol. 58, 84 (2014)CrossRefGoogle Scholar
  16. 16.
    A.J. Peter, I.B.S. Banu, J. Mater. Sci. Mater. Electron. 25, 2771 (2014)CrossRefGoogle Scholar
  17. 17.
    J.T. Lin, Z. Zeng, Q.M. Ma, Q.M. Wang, Y.F. Zhang, Energy 64, 551 (2014)CrossRefGoogle Scholar
  18. 18.
    J.S. Liao, B. Qiu, H.R. Wen, J.L. Chen, W.X. You, Mater. Res. Bull. 44, 1863 (2009)CrossRefGoogle Scholar
  19. 19.
    F.G. Yang, C.Y. Tu, J. Alloys Compd. 535, 83 (2012)CrossRefGoogle Scholar
  20. 20.
    G.E. Gilakoumakis, I.E. Lagaris, J. Appl. Phys. 64, 5106 (1988)CrossRefGoogle Scholar
  21. 21.
    L.I. Ivleva, T.T. Basiev, I.S. Voronina, P.G. Zverev, V.V. Osiko, N.M. Polozkov, Opt. Mater. 23, 439 (2003)CrossRefGoogle Scholar
  22. 22.
    J.Y. Wo, J.J. Bian, Ceram. Int. 38, 3217 (2012)CrossRefGoogle Scholar
  23. 23.
    Y.Q. Chen, S.W. Park, B.K. Moon, B.C. Choi, J.H. Jeong, C.F. Guo, CrystEngComm 15, 8255 (2013)CrossRefGoogle Scholar
  24. 24.
    X.Y. Sun, X.D. Sun, X.G. Li, J. He, B.S. Wang, J. Mater. Sci. Mater. Electron. 25, 2320 (2014)CrossRefGoogle Scholar
  25. 25.
    X.F. Duan, Y. Huang, Y. Cui, J.F. Wang, C.M. Lieber, Nature 409, 66 (2001)CrossRefGoogle Scholar
  26. 26.
    V.B. Mikhailik, H. Kraus, G. Miller, M.S. Mykhaylyk, D. Wahl, J. Appl. Phys. 97, 083523 (2005)CrossRefGoogle Scholar
  27. 27.
    S. Shi, J. Gao, J. Zhou, Opt. Mater. 30, 1616 (2008)CrossRefGoogle Scholar
  28. 28.
    P.Y. Jia, X.M. Liu, G.Z. Li, M. Yu, J. Fang, J. Lin, Nanotechnology 17, 734 (2006)CrossRefGoogle Scholar
  29. 29.
    R. Grasser, J. Lumin. 473, 12 (1976)Google Scholar
  30. 30.
    N. Khobragade, E. Sinha, S.K. Rout, M. Kar, Ceram. Int. 39, 9627 (2013)CrossRefGoogle Scholar
  31. 31.
    B.R. Judd, Phys. Rev. 127, 750 (1962)CrossRefGoogle Scholar
  32. 32.
    G. Stein, E. Wurzberg, J. Chem. Phys. 62, 208 (1975)CrossRefGoogle Scholar
  33. 33.
    A.G. Page, S.V. Godbole, M.D. Sastry, J. Phys. Chem. Solids 50, 571 (1989)CrossRefGoogle Scholar
  34. 34.
    B.S. Barros, A.C. de Lima, Z.R. da Silva, D.M.A. Melo, S. Alves Jr, J. Phys. Chem. Solids 73, 635 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of ScienceXi’an Polytechnic UniversityXi’anChina

Personalised recommendations