Fe doped TiO2 powder synthesized by sol gel method: structural and photocatalytic characterization

  • N. R. Mathews
  • M. A. Cortes Jacome
  • C. Angeles-Chavez
  • J. A. Toledo Antonio


Fe doped TiO2 samples were synthesized using sol–gel technique and its incorporation was studied using different experimental tools such as XRD, HRTEM, and XPS. It was observed that the TiO2 maintains the anatase phase when the Fe doping concentration is below 3 % or below. A structural transformation from anatase to rutile was observed when the doping concentration reaches 4 %. Fe doping inhibits the crystalline growth and the crystal size of 3 % Fe doped TiO2 was half of the undoped TiO2. The Fe segregation in TiO2 was identified by studying HAADF images. The Fe doping caused an apparent red shift in the absorption edge of TiO2. Photocatalytic experiments show that Fe3+ doping has considerably improved the decomposition of the organic component. With 0.5 % Fe doped TiO2 in 120 min, 88 % of the dye was degraded compared to 44 % degradation achieved by pure TiO2. The slight decrease in the photocatalytic activity for the 4 % Fe: TiO2 can be attributed to the change in structural phase.


TiO2 Rutile Photocatalytic Activity Raman Band Anatase Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank Maria Luisa Ramón for the XRD analysis; O. Gomez Daza and José Campos for general assistance in the laboratory. The TiO2 material used in this work was developed for the project CeMIE-Sol 207450/P28 


  1. 1.
    M.A. Sousa, C. Goncalves, H.O.S. Joao, C. Pereira, V.J. Vilar, R.A. Boaventura, M.F. Alpendurada, Sol. Energy 87, 219–228 (2013)CrossRefGoogle Scholar
  2. 2.
    E.I. Seck, J.M. Dona-Rodríguez, C. Fernandez-Rodríguez, D. Portillo-Carrizo, M.J. Hernández-Rodríguez, O.M. González-Díaz, J. Perez-Peña, Sol. Energy 87, 150–157 (2013)CrossRefGoogle Scholar
  3. 3.
    D. Wang, L. Xiao, Q. Luo, X. Li, J. An, Y. Duan, J. Hazard. Mater. 192, 150–159 (2011)CrossRefGoogle Scholar
  4. 4.
    N. Baram, D. Starosvetsky, J. Starosvetsky, M. Epshtein, R. Armon, Y. Ein-Eli, Electrochim. Acta 54, 3381–3386 (2009)CrossRefGoogle Scholar
  5. 5.
    E. Schuler, A.K. Gustavsson, S. Hertenberger, K. Sattler, Sol. Energy 96, 220–226 (2013)CrossRefGoogle Scholar
  6. 6.
    R. Velmurugan, B. Krishnakumar, B. Subash, M. Swaminathann, Sol. Energy Mate. Sol.Cells 108, 205–212 (2013)CrossRefGoogle Scholar
  7. 7.
    D.F.M. Oliveira, P.S. Batista, P.S. Muller Jr, V. Velani, M.D. França, D.R. de Souza, Machado AEH, 4R, Dye. Pigment. 92, 563–572 (2011)CrossRefGoogle Scholar
  8. 8.
    K.H. Leong, P. Monash, S. Ibrahim, P. Saravanan, Sol. Energy 101, 321–332 (2014)CrossRefGoogle Scholar
  9. 9.
    N. Wang, L. Lei, X.M. Zhang, Y.H. Tsang, Y. Chen, H.L.W. Chan, Micro. Eng. 88, 2797–2799 (2011)CrossRefGoogle Scholar
  10. 10.
    K.H. Yoon, J.S. Noh, C.H. Kwon, M. Muhammed, Mater. Chem. Phys. 95, 79–83 (2006)CrossRefGoogle Scholar
  11. 11.
    M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95(1), 69–96 (1995)CrossRefGoogle Scholar
  12. 12.
    H. Xu, L. Zhang, J. Phys. Chem. C 113, 1785 (2009)CrossRefGoogle Scholar
  13. 13.
    L. Cui, F. Huang, M. Niu, L. Zeng, J. Xu, Y. Wang, J. Mol. Catal. A: Chem. 326, 1–7 (2010)CrossRefGoogle Scholar
  14. 14.
    Y. Yalcın, M. Kılıc, Z. Cınar, Appl. Catal. B: Environ. 99, 469–477 (2010)CrossRefGoogle Scholar
  15. 15.
    T. Sun, J. Fan, E. Liu, L. Liu, Y. Wang, H. Dai, Y.O. Yang, W. Hou, X. Hu, Z. Jiang, Powder Technol. 228, 210–221 (2012)CrossRefGoogle Scholar
  16. 16.
    V.C. Papadimitriou, V.G. Stefanopoulos, M.N. Romanias, P. Papagiannakopoulos, K. Sambani, V. Tudose, G. Kiriakidis, Thin Solid Films 520, 1195–1201 (2011)CrossRefGoogle Scholar
  17. 17.
    V.D. Binas, K. Sambani, T. Maggos, A. Katsanaki, G. Kiriakidis, Appl. Catal. B: Environ. 113–114, 79–86 (2012)CrossRefGoogle Scholar
  18. 18.
    J. Wang, Y. Lv, Z. Zhang, Y. Deng, L. Zhang, B. Liu, R. Xu, X. Zhang, J. Hazard. Mater. 170, 398–404 (2009)CrossRefGoogle Scholar
  19. 19.
    T.-B. Nguyen, M.-J. Hwang, K.-S. Ryu, Appl. Surf. Sci. 258, 7299–7305 (2012)CrossRefGoogle Scholar
  20. 20.
    Q. Wua, C-Chao Yangb, R. van de Krola Catal, Today 225, 96–101 (2014)CrossRefGoogle Scholar
  21. 21.
    X. Zhang, L. Lei, Mater. Lett. 62, 895–897 (2008)CrossRefGoogle Scholar
  22. 22.
    W. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem. 98, 13669–13679 (1994)CrossRefGoogle Scholar
  23. 23.
    A.R. Bally, E.N. Korobeinikova, P.E. Schmid, F. Lévy, F. Bussy, J. Phys. D Appl. Phys. 31, 1149–1154 (1998)CrossRefGoogle Scholar
  24. 24.
    F.C. Gennari, D.M. Pasquevich, J. Mater. Sci. 33, 1571–1578 (1998)CrossRefGoogle Scholar
  25. 25.
    R. Alexandrescu, I. Morjan, M. Scarisoreanu, R. Birjega, Thin Solid Films 515, 8438–8445 (2007)CrossRefGoogle Scholar
  26. 26.
    T.K. Ghorai, S.K. Biswas, P. Pramanik, Appl. Surf. Sci. 254, 7498–7504 (2008)CrossRefGoogle Scholar
  27. 27.
    Z. Xu, J. Shang, C. Liu, C. Kang, H. Guo, Y. Du, Mater. Sci. Eng., B 63, 211–214 (1999)CrossRefGoogle Scholar
  28. 28.
    W. Zhou, Q. Cao, S. Tang, Powder Technol. 168, 32–36 (2006)CrossRefGoogle Scholar
  29. 29.
    M. Kanna, S. Wongnawa, Mater. Chem. Phys. 110, 166–175 (2008)CrossRefGoogle Scholar
  30. 30.
    W.-C. Hung, S.-H. Fu, J.-J. Tseng, H. Chu, T.-H. Ko, Chemosphere 66, 2142–2151 (2007)CrossRefGoogle Scholar
  31. 31.
    V.A. Yasir, P.N. Mohan Das, K.K.M. Yusuff, Int. J. Inorg. Mater. 3, 593–596 (2001)CrossRefGoogle Scholar
  32. 32.
    N.R. Mathews, E.R. Morales, M.A. Cortés-Jacome, J.A. Toledo-Antonio, Sol. Energy 83, 1499–1508 (2009)CrossRefGoogle Scholar
  33. 33.
    N.R. Mathews, M.A. Cortes-Jacome, E.R. Morales, J.A. Toledo-Antonio, Phys. Status Solidi C 6, S219–S223 (2009)CrossRefGoogle Scholar
  34. 34.
    B.D. Cullity, Elements of X ray Diffraction (Wesley Pub, Notre Dame, 1978)Google Scholar
  35. 35.
    A. Orendorz, A. Brodyanski, J. Lösch, L.H. Bai, Z.H. Chen, Y.K. Le, C. Ziegler, H. Gnaser, Surf. Sci. 601, 4390 (2007)CrossRefGoogle Scholar
  36. 36.
    T. Ohsaka, F. Izumi, Y. Fujiki, J. Raman Spectrosc. 7, 321–324 (1978)CrossRefGoogle Scholar
  37. 37.
    S.P.S. Porto, P.A. Fleury, T.C. Damen, Phys. Rev. 154, 522–526 (1967)CrossRefGoogle Scholar
  38. 38.
    S.-H. Shim, T.S. Duffy, Am. Mineral. 87, 31 (2001)Google Scholar
  39. 39.
    R.J. Gonzalez, R. Zallen, Phys. Rev. B 55, 7014–7017 (1997)CrossRefGoogle Scholar
  40. 40.
    S. Yu, H.J. Yun, D.M. Lee, J. Yi, J. Mater. Chem. 22, 12629–12635 (2012)CrossRefGoogle Scholar
  41. 41.
    C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy (Perkin Elmer Corp, Physical Electronics Division, USA, 1979)Google Scholar
  42. 42.
    Z. Xu, B.C. Gates, J. Catal. 154, 335–344 (1995)CrossRefGoogle Scholar
  43. 43.
    D.V. Wellia, Q.C. Xu, M.A. Sk, K.H. Lim, T.M. Lim, T.T.Y. Tan, Appl. Catal. A: Gen. 401, 98–105 (2011)CrossRefGoogle Scholar
  44. 44.
    L. Wan, Y. Gao, X.H. Xia, Q.R. Deng, G. Shao, Mater. Res. Bull. 46, 442–446 (2011)CrossRefGoogle Scholar
  45. 45.
    C.C. Yen, D.-Y. Wang, L.S. Chang, H.C. Shih, J. Solid State Chem. 184, 2053–2060 (2011)CrossRefGoogle Scholar
  46. 46.
    E.C. Butler, A.P. Davis, J. Photochem. Photobiol. A: Chem. 70, 273–283 (1993)CrossRefGoogle Scholar
  47. 47.
    M. Zhou, J. Yu, B. Cheng, H. Yu, Mater. Chem. Phys. 93, 159–163 (2005)CrossRefGoogle Scholar
  48. 48.
    W. Jiang, Y. Wang, L. Gu, J. Non-Cryst. Sol. 353, 4191–4194 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • N. R. Mathews
    • 1
  • M. A. Cortes Jacome
    • 2
  • C. Angeles-Chavez
    • 2
  • J. A. Toledo Antonio
    • 2
  1. 1.Instituto de Energías RenovablesUniversidad Nacional Autónoma de MéxicoTemixcoMexico
  2. 2.Programa de Ingeniería MolecularInstituto Mexicano del PetróleoMéxicoMexico

Personalised recommendations