An investigation of flower shaped NiO nanostructures by microwave and hydrothermal route

  • G. Anandha Babu
  • G. Ravi
  • M. Navaneethan
  • M. Arivanandhan
  • Y. Hayakawa


The face centered cubic phase of NiO nanostructures were successfully synthesized from microwave and hydrothermal methods. The structural properties of the synthesized material were analyzed by X-ray diffraction (XRD) studies. The thermal analysis revealed the transformation of Ni(OH)2 into NiO at about 380 °C. The obtained scanning electron microscopy images exhibited less agglomerated flowers for hydrothermal reacted NiO than the microwave processed samples. The sheet like morphologies of NiO nanostructures were confirmed by transmission electron microscope and the obtained particles sizes were comparable to the calculated values from XRD data. The UV–Vis and photoluminescence spectra results showed that the absorption edges of the NiO nanoflowers have a blue-shift due to quantum confinement effect. The Raman spectrum exhibited the transformation of antiferromagnetic to superparamagnetic transition confirmed from the absence of magnon peak. The XPS spectrum presented the observation of Ni 2p and O 1s levels with higher intense peak nature for hydrothermal treated NiO than microwave. The hysteresis loops of the NiO samples prepared by both hydrothermal and microwave heating methods revealed the weak ferromagnetic behaviors at room temperature. Based on the experimental observations and analysis, a possible hydrothermal reaction mechanism is proposed to synthesize flower shaped NiO nanostructured materials with improved structural, optical, morphological and magnetic properties compared to microwave synthesis.


Cetyl Trimethyl Ammonium Bromide Quantum Confinement Effect Field Cool Zero Field Cool Small Hysteresis Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



One of the authors G. Anandha babu gratefully acknowledges DST, India for the financial support under the scheme of INSPIRE Fellowship (Grant No. IF110040) to carry out this work.


  1. 1.
    F.A. Harraz, R.M. Mohamed, A. Shawky, I.A. Ibrahim, Composition and phase control of Ni/NiO nanoparticles for photocatalytic degradation of EDTA. J. Alloys Compd. 508, 133–140 (2010)CrossRefGoogle Scholar
  2. 2.
    Q. Dong, S. Yin, C. Guo, X. Wu, N. Kumada, T. Takei, A. Miura, Y. Yonesaki, T. Sato, Single-crystalline porous NiO nanosheets prepared from β-Ni(OH)2 nanosheets: magnetic property and photocatalytic activity. Appl. Catal. B Environ. 147, 741–747 (2014)CrossRefGoogle Scholar
  3. 3.
    C. Xia, X. Yanjun, W. Ning, Facile synthesis of NiO nanoflowers and their electrocatalytic performance. Sens. Actuators B 153, 434–438 (2011)CrossRefGoogle Scholar
  4. 4.
    G. Bai, H. Dai, J. Deng, Y. Liu, W. Qiu, Z. Zhao, X. Li, H. Yang, The microemulsion preparation and high catalytic performance of mesoporous NiO nanorods and nanocubes for toluene combustion. Chem. Eng. J. 219, 200–208 (2013)CrossRefGoogle Scholar
  5. 5.
    S. Das, J.B. Seol, Y.C. Kim, C.G. Park, Formation of NiO nanowires on the surface of nickel strips. J. Alloys Compd. 505, L19–L21 (2010)CrossRefGoogle Scholar
  6. 6.
    L. Hu, B. Qu, L. Chen, Q. Li, Low-temperature preparation of ultrathin nanoflakes assembled tremella-like NiO hierarchical nanostructures for high-performance lithium–ion batteries. Mater. Lett. 108, 92–95 (2013)CrossRefGoogle Scholar
  7. 7.
    C. Yuan, L. Hou, Y. Feng, S. Xiong, X. Zhang, Sacrificial template synthesis of short mesoporous NiO nanotubes and their application in electrochemical capacitors. Electrochim. Acta 88, 507–512 (2013)CrossRefGoogle Scholar
  8. 8.
    B. Cheng, Y. Le, W. Cai, J. Yu, Synthesis of hierarchical Ni(OH)2 and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water. J. Hazard. Mater. 185, 889–897 (2011)CrossRefGoogle Scholar
  9. 9.
    C.Y. Cao, W. Guo, Z.M. Cui, W.G. Song, W. Cai, Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes. J. Mater. Chem. 21, 3204–3209 (2011)Google Scholar
  10. 10.
    Y. Luo, G. Duan, G. Li, Synthesis and characterization of flower-like β-Ni(OH)2 nanoarchitectures. J. Solid State Chem. 180, 2149–2153 (2007)CrossRefGoogle Scholar
  11. 11.
    G. Bai, H. Dai, J. Deng, Y. Liu, K. Ji, Porous NiO nanoflowers and nanourchins: highly active catalysts for toluene combustion. Catal. Commun. 27, 148–153 (2012)CrossRefGoogle Scholar
  12. 12.
    A. Wei, B. Liu, H. Zhao, Y. Chen, W. Wang, Y. Ma, H. Yang, S. Liu, Synthesis and formation mechanism of flowerlike architectures assembled from ultrathin NiO nanoflakes and their adsorption to malachite green and acid red in water. Chem. Eng. J. 239, 141–148 (2014)CrossRefGoogle Scholar
  13. 13.
    H. Chai, X. Chen, D. Jia, S. Bao, W. Zhou, Flower-like NiO structures: controlled hydrothermal synthesis and electrochemical characteristic. Mater. Res. Bull. 47, 3947–3951 (2012)CrossRefGoogle Scholar
  14. 14.
    Y. Cui, C. Wang, S. Wu, G. Liu, F. Zhang, T. Wang, Lotus-root-like NiO nanosheets and flower-like NiO microspheres: synthesis and magnetic properties. Cryst. Eng. Commun. 13, 4930–4934 (2011)CrossRefGoogle Scholar
  15. 15.
    S.K. Meher, P. Justin, G. Ranga Rao, Sumanta Kumar Meher, Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide. ACS Appl. Mater. Interfaces 3, 2063–2073 (2011)CrossRefGoogle Scholar
  16. 16.
    Q. Yang, J. Sha, X. Ma, D. Yang, Synthesis of NiO nanowires by a sol–gel process. Mater. Lett. 59, 1967–1970 (2005)CrossRefGoogle Scholar
  17. 17.
    V. Verma, M. Katiyar, Effect of the deposition parameters on the structural and magnetic properties of pulsed laser ablated NiO thin films. Thin Solid Films 527, 369–376 (2013)CrossRefGoogle Scholar
  18. 18.
    A. Aslani, V. Oroojpour, M. Fallahi, Sonochemical synthesis, size controlling and gas sensing properties of NiO nanoparticles. Appl. Surf. Sci. 257, 4056–4061 (2011)CrossRefGoogle Scholar
  19. 19.
    K. Chen, Z. Lü, X. Chen, N. Ai, X. Huang, B. Wei, J. Hu, W. Su, Characteristics of NiO-YSZ anode based on NiO particles synthesized by the precipitation method. J. Alloys Compd. 454, 447–453 (2008)CrossRefGoogle Scholar
  20. 20.
    A.G. Al-Sehemi, A.S. Al-Shihri, A. Kalam, G. Du, T. Ahmad, Microwave synthesis, optical properties and surface area studies of NiO nanoparticles. J. Mol. Struct. 1058, 56–61 (2014)CrossRefGoogle Scholar
  21. 21.
    M. Liu, J. Chang, J. Sun, L. Gao, A facile preparation of NiO/Ni composites as high-performance pseudocapacitor materials. RSC Adv. 3, 8000–8008 (2013)Google Scholar
  22. 22.
    S.D.G. Ram, M.A. Kulandainathan, G. Ravi, On the study of pH effects in the microwave enhanced rapid synthesis of nano-ZnO. Appl. Phys. A 99, 197–203 (2010)CrossRefGoogle Scholar
  23. 23.
    Z. Zhu, N. Wei, H. Liu, Z. He, Microwave-assisted hydrothermal synthesis of Ni(OH)2 architectures and their in situ thermal convention to NiO. Adv. Powder. Technol. 22, 422–426 (2011)CrossRefGoogle Scholar
  24. 24.
    X. Tian, C. Cheng, L. Qian, B. Zheng, H. Yuan, S. Xie, D. Xiao, M.M.F. Choi, Microwave-assisted non-aqueous homogenous precipitation of nanoball-like mesoporous α-Ni(OH)2 as a precursor for NiOx and its application as a pseudocapacitor. J. Mater. Chem. 22, 8029–8035 (2012)CrossRefGoogle Scholar
  25. 25.
    Z. Wei, H. Qiao, H. Yang, C. Zhang, X. Yan, Characterization of NiO nanoparticles by anodic arc plasma method. J. Alloys Compd. 479, 855–858 (2009)CrossRefGoogle Scholar
  26. 26.
    E.R. Beach, K. Shqau, S.E. Brown, S.J. Rozeveld, P.A. Morris, Solvothermal synthesis of crystalline nickel oxide nanoparticles. Mater. Chem. Phys. 115, 371–377 (2009)CrossRefGoogle Scholar
  27. 27.
    S. Mohseni Meybodi, S.A. Hosseini, M. Razaee, S.K. Sadrnezhaad, D. Mohammadyani, Synthesis of wide band gap nanocrystalline NiO powder via a sonochemical method. Ultrason. Sonochem. 19, 841–845 (2012)CrossRefGoogle Scholar
  28. 28.
    Y. Wang, J. Zhu, X. Yang, L. Lu, X. Wang, Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate. Thermochim. Acta 437, 106–109 (2005)CrossRefGoogle Scholar
  29. 29.
    L. Wang, Y. Zhao, Q. Lai, Y. Hao, Preparation of 3D rose-like NiO complex structure and its electrochemical property. J. Alloys Compd. 495, 82–87 (2010)CrossRefGoogle Scholar
  30. 30.
    X. Song, L. Gao, Facile synthesis of polycrystalline NiO nanorods assisted by microwave heating. J. Am. Ceram. Soc. 91(10), 3465–3468 (2008)CrossRefGoogle Scholar
  31. 31.
    A.P. LaGrow, B. Ingham, S. Cheong, G.V.M. Williams, C. Dotzler, M.F. Toney, D.A. Jefferson, E.C. Corbos, P.T. Bishop, J. Cookson, R.D. Tilley, Synthesis, alignment, and magnetic properties of monodisperse nickel nanocubes. J. Am. Chem. Soc. 134, 855–858 (2012)CrossRefGoogle Scholar
  32. 32.
    Y. Ren, L. Gao, From three-dimensional flower-like α-Ni(OH)2 nanostructures to hierarchical porous NiO nanoflowers: microwave-assisted fabrication and supercapacitor properties. J. Am. Ceram. Soc. 93(11), 3560–3564 (2010)CrossRefGoogle Scholar
  33. 33.
    S. Rakshit, S. Chall, S.S. Mati, A. Roychowdhury, S.P. Moulika, S.C. Bhattacharya, Morphology control of nickel oxalate by soft chemistry and conversion to nickel oxide for application in photocatalysis. RSC Adv. 3, 6106–6116 (2013)CrossRefGoogle Scholar
  34. 34.
    S. Liu, J. Jia, J. Wang, S. Liu, X. Wang, H. Song, X. Hu, Synthesis of Fe-doped NiO nanofibers using electrospinning method and their ferromagnetic properties. J. Magn. Magn. Mater. 324, 2070–2074 (2012)CrossRefGoogle Scholar
  35. 35.
    G. Zhu, C. Xi, H. Xu, D. Zheng, Y. Liu, X. Xu, X. Shen, Hierarchical NiO hollow microspheres assembled from nanosheet-stacked nanoparticles and their application in a gas sensor. RSC Adv. 2, 4236–4241 (2012)CrossRefGoogle Scholar
  36. 36.
    T. Kavitha, H Yuvaraj (2011) A facile approach to the synthesis of high-quality NiO nanorods: electrochemical and antibacterial properties. J. Mater. Chem. 21, 15686–15691 (2011)CrossRefGoogle Scholar
  37. 37.
    K. Liang, X. Tang, W. Hu, High-performance three-dimensional nanoporous NiO film as a supercapacitor electrode. J. Mater. Chem. 22, 11062–11067 (2012)CrossRefGoogle Scholar
  38. 38.
    B. Varghese, M.V. Reddy, Z. Yanwu, C.S. Lit, T.C. Hoong, G.V. Subba Rao, B.V.R. Chowdari, A.T.S. Wee, C.T. Lim, C.H. Sow, Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chem. Mater. 20, 3360–3367 (2008)CrossRefGoogle Scholar
  39. 39.
    S.D. Tiwari, K.P. Rajeev, Signatures of spin-glass freezing in NiO nanoparticles. Phys. Rev. B 72, 104433 (2005)CrossRefGoogle Scholar
  40. 40.
    E. Winkler, R.D. Zysler, M.V. Mansilla, D. Fiorani, D. Rinaldi, M. Vasilakaki, K.N. Trohidou, Surface spin-glass freezing in interacting core–shell NiO nanoparticles. Nanotechnology 19, 185702–185710 (2008)CrossRefGoogle Scholar
  41. 41.
    M. Salavati-Niasari, F. Mohandes, F. Davar, M. Mazaheri, M. Monemzadeh, N. Yavarinia, Preparation of NiO nanoparticles from metal-organic frameworks via a solid-state decomposition route. Inorg. Chim. Acta 362, 3691–3697 (2009)CrossRefGoogle Scholar
  42. 42.
    F. Davar, Z. Fereshteh, M. Salavati-Niasari, Nanoparticles Ni and NiO: synthesis, characterization and magnetic properties. J. Alloys Compd. 476, 797–801 (2009)CrossRefGoogle Scholar
  43. 43.
    M. Salavati-Niasari, N. Mir, F. Davar, Synthesis and characterization of NiO nanoclusters via thermal decomposition. Polyhedron 28, 1111–1114 (2009)CrossRefGoogle Scholar
  44. 44.
    M.A. Khadar, V. Biju, A. Inoue, Effect of finite size on the magnetization behavior of nanostructured nickel oxide. J. Mater. Res. Bull. 38, 1341–1349 (2003)CrossRefGoogle Scholar
  45. 45.
    V. Ranga Rao Pulimi, P. Jeevanandam, The effect of anion on the magnetic properties of nanocrystalline NiO synthesized by homogeneous precipitation. J. Magn. Magn. Mater. 321, 2556–2562 (2009)CrossRefGoogle Scholar
  46. 46.
    S. Farhadi, Z. Roostaei-Zaniyani, Simple and low-temperature synthesis of NiO nanoparticles through solid-state thermal decomposition of the hexa(ammine)Ni(II) nitrate, [Ni(NH3)6](NO3)2, complex. Poyhedron 30, 1244–1249 (2011)CrossRefGoogle Scholar
  47. 47.
    M. Tadic, M. Panjan, D. Markovic, B. Stanojevic, D. Jovanovic, I. Milosevic, V Spasojevic (2014) NiO core–shell nanostructure with ferromagnetic-like behavior at room temperature. J. Alloys Compd. 586, S322–S325 (2014)CrossRefGoogle Scholar
  48. 48.
    Q. Li, L.S. Wang, B.Y. Hu, C. Yang, L. Zhou, L. Zhang, Preparation and characterization of NiO nanoparticles through calcination of malate gel. Mater. Lett. 61, 1615–1618 (2007)CrossRefGoogle Scholar
  49. 49.
    S. Chander, S. Kumar, A. Krishnamurthy, B.K. Srivastava, V.K. Aswal, Magnetic behavior of nanoparticles of Fe2.9Zn0.1O4, Pram. J. Phys. 61(3), 617–624 (2003)Google Scholar
  50. 50.
    A.J. Rondinone, A.C.S. Samia, Z.J. Zhang, Superparamagnetic relaxation and magnetic anisotropy energy distribution in CoFe2O4 spinel ferrite nanocrystallites. J. Phys. Chem. B 103, 6876–6880 (1999)CrossRefGoogle Scholar
  51. 51.
    S.N. Dolia, S. Chander, M.P. Sharma, S. Kumar, Superparamagnetic behavior of nanoparticles of Ni–Cu ferrite. Indian J. Pure Appl. Phys. 44, 169–172 (2006)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • G. Anandha Babu
    • 1
  • G. Ravi
    • 1
  • M. Navaneethan
    • 2
  • M. Arivanandhan
    • 2
  • Y. Hayakawa
    • 2
  1. 1.Department of PhysicsAlagappa UniversityKaraikudiIndia
  2. 2.Research Institute of ElectronicsShizuoka UniversityHamamatsuJapan

Personalised recommendations