Skip to main content
Log in

An investigation of flower shaped NiO nanostructures by microwave and hydrothermal route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The face centered cubic phase of NiO nanostructures were successfully synthesized from microwave and hydrothermal methods. The structural properties of the synthesized material were analyzed by X-ray diffraction (XRD) studies. The thermal analysis revealed the transformation of Ni(OH)2 into NiO at about 380 °C. The obtained scanning electron microscopy images exhibited less agglomerated flowers for hydrothermal reacted NiO than the microwave processed samples. The sheet like morphologies of NiO nanostructures were confirmed by transmission electron microscope and the obtained particles sizes were comparable to the calculated values from XRD data. The UV–Vis and photoluminescence spectra results showed that the absorption edges of the NiO nanoflowers have a blue-shift due to quantum confinement effect. The Raman spectrum exhibited the transformation of antiferromagnetic to superparamagnetic transition confirmed from the absence of magnon peak. The XPS spectrum presented the observation of Ni 2p and O 1s levels with higher intense peak nature for hydrothermal treated NiO than microwave. The hysteresis loops of the NiO samples prepared by both hydrothermal and microwave heating methods revealed the weak ferromagnetic behaviors at room temperature. Based on the experimental observations and analysis, a possible hydrothermal reaction mechanism is proposed to synthesize flower shaped NiO nanostructured materials with improved structural, optical, morphological and magnetic properties compared to microwave synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F.A. Harraz, R.M. Mohamed, A. Shawky, I.A. Ibrahim, Composition and phase control of Ni/NiO nanoparticles for photocatalytic degradation of EDTA. J. Alloys Compd. 508, 133–140 (2010)

    Article  Google Scholar 

  2. Q. Dong, S. Yin, C. Guo, X. Wu, N. Kumada, T. Takei, A. Miura, Y. Yonesaki, T. Sato, Single-crystalline porous NiO nanosheets prepared from β-Ni(OH)2 nanosheets: magnetic property and photocatalytic activity. Appl. Catal. B Environ. 147, 741–747 (2014)

    Article  Google Scholar 

  3. C. Xia, X. Yanjun, W. Ning, Facile synthesis of NiO nanoflowers and their electrocatalytic performance. Sens. Actuators B 153, 434–438 (2011)

    Article  Google Scholar 

  4. G. Bai, H. Dai, J. Deng, Y. Liu, W. Qiu, Z. Zhao, X. Li, H. Yang, The microemulsion preparation and high catalytic performance of mesoporous NiO nanorods and nanocubes for toluene combustion. Chem. Eng. J. 219, 200–208 (2013)

    Article  Google Scholar 

  5. S. Das, J.B. Seol, Y.C. Kim, C.G. Park, Formation of NiO nanowires on the surface of nickel strips. J. Alloys Compd. 505, L19–L21 (2010)

    Article  Google Scholar 

  6. L. Hu, B. Qu, L. Chen, Q. Li, Low-temperature preparation of ultrathin nanoflakes assembled tremella-like NiO hierarchical nanostructures for high-performance lithium–ion batteries. Mater. Lett. 108, 92–95 (2013)

    Article  Google Scholar 

  7. C. Yuan, L. Hou, Y. Feng, S. Xiong, X. Zhang, Sacrificial template synthesis of short mesoporous NiO nanotubes and their application in electrochemical capacitors. Electrochim. Acta 88, 507–512 (2013)

    Article  Google Scholar 

  8. B. Cheng, Y. Le, W. Cai, J. Yu, Synthesis of hierarchical Ni(OH)2 and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water. J. Hazard. Mater. 185, 889–897 (2011)

    Article  Google Scholar 

  9. C.Y. Cao, W. Guo, Z.M. Cui, W.G. Song, W. Cai, Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes. J. Mater. Chem. 21, 3204–3209 (2011)

  10. Y. Luo, G. Duan, G. Li, Synthesis and characterization of flower-like β-Ni(OH)2 nanoarchitectures. J. Solid State Chem. 180, 2149–2153 (2007)

    Article  Google Scholar 

  11. G. Bai, H. Dai, J. Deng, Y. Liu, K. Ji, Porous NiO nanoflowers and nanourchins: highly active catalysts for toluene combustion. Catal. Commun. 27, 148–153 (2012)

    Article  Google Scholar 

  12. A. Wei, B. Liu, H. Zhao, Y. Chen, W. Wang, Y. Ma, H. Yang, S. Liu, Synthesis and formation mechanism of flowerlike architectures assembled from ultrathin NiO nanoflakes and their adsorption to malachite green and acid red in water. Chem. Eng. J. 239, 141–148 (2014)

    Article  Google Scholar 

  13. H. Chai, X. Chen, D. Jia, S. Bao, W. Zhou, Flower-like NiO structures: controlled hydrothermal synthesis and electrochemical characteristic. Mater. Res. Bull. 47, 3947–3951 (2012)

    Article  Google Scholar 

  14. Y. Cui, C. Wang, S. Wu, G. Liu, F. Zhang, T. Wang, Lotus-root-like NiO nanosheets and flower-like NiO microspheres: synthesis and magnetic properties. Cryst. Eng. Commun. 13, 4930–4934 (2011)

    Article  Google Scholar 

  15. S.K. Meher, P. Justin, G. Ranga Rao, Sumanta Kumar Meher, Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide. ACS Appl. Mater. Interfaces 3, 2063–2073 (2011)

    Article  Google Scholar 

  16. Q. Yang, J. Sha, X. Ma, D. Yang, Synthesis of NiO nanowires by a sol–gel process. Mater. Lett. 59, 1967–1970 (2005)

    Article  Google Scholar 

  17. V. Verma, M. Katiyar, Effect of the deposition parameters on the structural and magnetic properties of pulsed laser ablated NiO thin films. Thin Solid Films 527, 369–376 (2013)

    Article  Google Scholar 

  18. A. Aslani, V. Oroojpour, M. Fallahi, Sonochemical synthesis, size controlling and gas sensing properties of NiO nanoparticles. Appl. Surf. Sci. 257, 4056–4061 (2011)

    Article  Google Scholar 

  19. K. Chen, Z. Lü, X. Chen, N. Ai, X. Huang, B. Wei, J. Hu, W. Su, Characteristics of NiO-YSZ anode based on NiO particles synthesized by the precipitation method. J. Alloys Compd. 454, 447–453 (2008)

    Article  Google Scholar 

  20. A.G. Al-Sehemi, A.S. Al-Shihri, A. Kalam, G. Du, T. Ahmad, Microwave synthesis, optical properties and surface area studies of NiO nanoparticles. J. Mol. Struct. 1058, 56–61 (2014)

    Article  Google Scholar 

  21. M. Liu, J. Chang, J. Sun, L. Gao, A facile preparation of NiO/Ni composites as high-performance pseudocapacitor materials. RSC Adv. 3, 8000–8008 (2013)

    Google Scholar 

  22. S.D.G. Ram, M.A. Kulandainathan, G. Ravi, On the study of pH effects in the microwave enhanced rapid synthesis of nano-ZnO. Appl. Phys. A 99, 197–203 (2010)

    Article  Google Scholar 

  23. Z. Zhu, N. Wei, H. Liu, Z. He, Microwave-assisted hydrothermal synthesis of Ni(OH)2 architectures and their in situ thermal convention to NiO. Adv. Powder. Technol. 22, 422–426 (2011)

    Article  Google Scholar 

  24. X. Tian, C. Cheng, L. Qian, B. Zheng, H. Yuan, S. Xie, D. Xiao, M.M.F. Choi, Microwave-assisted non-aqueous homogenous precipitation of nanoball-like mesoporous α-Ni(OH)2 as a precursor for NiOx and its application as a pseudocapacitor. J. Mater. Chem. 22, 8029–8035 (2012)

    Article  Google Scholar 

  25. Z. Wei, H. Qiao, H. Yang, C. Zhang, X. Yan, Characterization of NiO nanoparticles by anodic arc plasma method. J. Alloys Compd. 479, 855–858 (2009)

    Article  Google Scholar 

  26. E.R. Beach, K. Shqau, S.E. Brown, S.J. Rozeveld, P.A. Morris, Solvothermal synthesis of crystalline nickel oxide nanoparticles. Mater. Chem. Phys. 115, 371–377 (2009)

    Article  Google Scholar 

  27. S. Mohseni Meybodi, S.A. Hosseini, M. Razaee, S.K. Sadrnezhaad, D. Mohammadyani, Synthesis of wide band gap nanocrystalline NiO powder via a sonochemical method. Ultrason. Sonochem. 19, 841–845 (2012)

    Article  Google Scholar 

  28. Y. Wang, J. Zhu, X. Yang, L. Lu, X. Wang, Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate. Thermochim. Acta 437, 106–109 (2005)

    Article  Google Scholar 

  29. L. Wang, Y. Zhao, Q. Lai, Y. Hao, Preparation of 3D rose-like NiO complex structure and its electrochemical property. J. Alloys Compd. 495, 82–87 (2010)

    Article  Google Scholar 

  30. X. Song, L. Gao, Facile synthesis of polycrystalline NiO nanorods assisted by microwave heating. J. Am. Ceram. Soc. 91(10), 3465–3468 (2008)

    Article  Google Scholar 

  31. A.P. LaGrow, B. Ingham, S. Cheong, G.V.M. Williams, C. Dotzler, M.F. Toney, D.A. Jefferson, E.C. Corbos, P.T. Bishop, J. Cookson, R.D. Tilley, Synthesis, alignment, and magnetic properties of monodisperse nickel nanocubes. J. Am. Chem. Soc. 134, 855–858 (2012)

    Article  Google Scholar 

  32. Y. Ren, L. Gao, From three-dimensional flower-like α-Ni(OH)2 nanostructures to hierarchical porous NiO nanoflowers: microwave-assisted fabrication and supercapacitor properties. J. Am. Ceram. Soc. 93(11), 3560–3564 (2010)

    Article  Google Scholar 

  33. S. Rakshit, S. Chall, S.S. Mati, A. Roychowdhury, S.P. Moulika, S.C. Bhattacharya, Morphology control of nickel oxalate by soft chemistry and conversion to nickel oxide for application in photocatalysis. RSC Adv. 3, 6106–6116 (2013)

    Article  Google Scholar 

  34. S. Liu, J. Jia, J. Wang, S. Liu, X. Wang, H. Song, X. Hu, Synthesis of Fe-doped NiO nanofibers using electrospinning method and their ferromagnetic properties. J. Magn. Magn. Mater. 324, 2070–2074 (2012)

    Article  Google Scholar 

  35. G. Zhu, C. Xi, H. Xu, D. Zheng, Y. Liu, X. Xu, X. Shen, Hierarchical NiO hollow microspheres assembled from nanosheet-stacked nanoparticles and their application in a gas sensor. RSC Adv. 2, 4236–4241 (2012)

    Article  Google Scholar 

  36. T. Kavitha, H Yuvaraj (2011) A facile approach to the synthesis of high-quality NiO nanorods: electrochemical and antibacterial properties. J. Mater. Chem. 21, 15686–15691 (2011)

    Article  Google Scholar 

  37. K. Liang, X. Tang, W. Hu, High-performance three-dimensional nanoporous NiO film as a supercapacitor electrode. J. Mater. Chem. 22, 11062–11067 (2012)

    Article  Google Scholar 

  38. B. Varghese, M.V. Reddy, Z. Yanwu, C.S. Lit, T.C. Hoong, G.V. Subba Rao, B.V.R. Chowdari, A.T.S. Wee, C.T. Lim, C.H. Sow, Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chem. Mater. 20, 3360–3367 (2008)

    Article  Google Scholar 

  39. S.D. Tiwari, K.P. Rajeev, Signatures of spin-glass freezing in NiO nanoparticles. Phys. Rev. B 72, 104433 (2005)

    Article  Google Scholar 

  40. E. Winkler, R.D. Zysler, M.V. Mansilla, D. Fiorani, D. Rinaldi, M. Vasilakaki, K.N. Trohidou, Surface spin-glass freezing in interacting core–shell NiO nanoparticles. Nanotechnology 19, 185702–185710 (2008)

    Article  Google Scholar 

  41. M. Salavati-Niasari, F. Mohandes, F. Davar, M. Mazaheri, M. Monemzadeh, N. Yavarinia, Preparation of NiO nanoparticles from metal-organic frameworks via a solid-state decomposition route. Inorg. Chim. Acta 362, 3691–3697 (2009)

    Article  Google Scholar 

  42. F. Davar, Z. Fereshteh, M. Salavati-Niasari, Nanoparticles Ni and NiO: synthesis, characterization and magnetic properties. J. Alloys Compd. 476, 797–801 (2009)

    Article  Google Scholar 

  43. M. Salavati-Niasari, N. Mir, F. Davar, Synthesis and characterization of NiO nanoclusters via thermal decomposition. Polyhedron 28, 1111–1114 (2009)

    Article  Google Scholar 

  44. M.A. Khadar, V. Biju, A. Inoue, Effect of finite size on the magnetization behavior of nanostructured nickel oxide. J. Mater. Res. Bull. 38, 1341–1349 (2003)

    Article  Google Scholar 

  45. V. Ranga Rao Pulimi, P. Jeevanandam, The effect of anion on the magnetic properties of nanocrystalline NiO synthesized by homogeneous precipitation. J. Magn. Magn. Mater. 321, 2556–2562 (2009)

    Article  Google Scholar 

  46. S. Farhadi, Z. Roostaei-Zaniyani, Simple and low-temperature synthesis of NiO nanoparticles through solid-state thermal decomposition of the hexa(ammine)Ni(II) nitrate, [Ni(NH3)6](NO3)2, complex. Poyhedron 30, 1244–1249 (2011)

    Article  Google Scholar 

  47. M. Tadic, M. Panjan, D. Markovic, B. Stanojevic, D. Jovanovic, I. Milosevic, V Spasojevic (2014) NiO core–shell nanostructure with ferromagnetic-like behavior at room temperature. J. Alloys Compd. 586, S322–S325 (2014)

    Article  Google Scholar 

  48. Q. Li, L.S. Wang, B.Y. Hu, C. Yang, L. Zhou, L. Zhang, Preparation and characterization of NiO nanoparticles through calcination of malate gel. Mater. Lett. 61, 1615–1618 (2007)

    Article  Google Scholar 

  49. S. Chander, S. Kumar, A. Krishnamurthy, B.K. Srivastava, V.K. Aswal, Magnetic behavior of nanoparticles of Fe2.9Zn0.1O4, Pram. J. Phys. 61(3), 617–624 (2003)

    Google Scholar 

  50. A.J. Rondinone, A.C.S. Samia, Z.J. Zhang, Superparamagnetic relaxation and magnetic anisotropy energy distribution in CoFe2O4 spinel ferrite nanocrystallites. J. Phys. Chem. B 103, 6876–6880 (1999)

    Article  Google Scholar 

  51. S.N. Dolia, S. Chander, M.P. Sharma, S. Kumar, Superparamagnetic behavior of nanoparticles of Ni–Cu ferrite. Indian J. Pure Appl. Phys. 44, 169–172 (2006)

    Google Scholar 

Download references

Acknowledgments

One of the authors G. Anandha babu gratefully acknowledges DST, India for the financial support under the scheme of INSPIRE Fellowship (Grant No. IF110040) to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ravi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anandha Babu, G., Ravi, G., Navaneethan, M. et al. An investigation of flower shaped NiO nanostructures by microwave and hydrothermal route. J Mater Sci: Mater Electron 25, 5231–5240 (2014). https://doi.org/10.1007/s10854-014-2293-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2293-4

Keywords

Navigation