Effect of sintering temperature on structure and dielectric behavior of 0.95(Bi0.5Na0.5)0.97(Li0.5Nd0.5)0.03TiO3–0.05BaTiO3 ceramics

  • Zhenyong Cen
  • Changrong Zhou
  • Xinglang Ye
  • Yazhou Zhao
  • Fangyu Gan
  • Huanhua Zhang


Lead free 0.95(Bi0.5Na0.5)0.97(Li0.5Nd0.5)0.03TiO3–0.05BaTiO3 (BNTLN0.03–BT5) ceramics were synthesized by conventional solid state reaction route. The effect of sintering temperature (T s) on structure and dielectric behaviors of BNTLN0.03–BT5 ceramics is investigated systematically. With increasing T s, the structure of BNTLN0.03–BT5 ceramics transforms from rhombohedral symmetry to pseudo-cubic symmetry. The grain size increases from ~4 to ~10 μm with increasing T s. The dielectric constants ε r, dielectric losses tanδ and dielectric frequency dispersion increase gradually at room temperature with increasing T s. The temperature stability coefficient f ε of dielectric constant ε r and the diffuseness coefficient γ increases with increasing T s. The sharp increase of dielectric constant ε r in the frequency of 1 kHz above T m is suppressed with increasing T s due to reducing Maxwell–Wagner polarization.


BaTiO3 Piezoelectric Ceramic Dielectric Behavior Morphotropic Phase Boundary Ferroelectric Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Nature Science Foundation of China (61261012, 61361007 and 11364008) and Guangxi Key Laboratory of Information Materials (131001-Z).


  1. 1.
    B.J. Fang, N. Jiang, C.L. Ding, Q.B. Du, J.N. Ding, Phys. Status Solidi A 209, 254–261 (2012)CrossRefGoogle Scholar
  2. 2.
    G. Trefalt, B. Malič, J. Holc, H. Uršič, M. Kosec, J. Am. Ceram. Soc. 95, 1858–1865 (2012)CrossRefGoogle Scholar
  3. 3.
    H. Ursic, J. Holc, M. Kosec, J. Eur. Ceram. Soc. 33, 795–803 (2013)CrossRefGoogle Scholar
  4. 4.
    D. Maurya, M. Murayama, A. Pramanick, W.T. Reynolds Jr, K. An, S. Priya, J. Appl. Phys. 113, 114101 (2013)CrossRefGoogle Scholar
  5. 5.
    C. Ma, X. Tan, E. Dul’kin, M. Roth, J. Appl. Phys. 108, 104105 (2010)CrossRefGoogle Scholar
  6. 6.
    A.J. Royles, A.J. Bell, A.P. Jephcoat, A.K. Kleppe, S.J. Milne, T.P. Comyn, Appl. Phys. Lett. 97, 132909 (2010)CrossRefGoogle Scholar
  7. 7.
    C. Ma, X. Tan, In situ transmission electron microscopy study on the phase transitions in lead-free (1 − x)(Bi1/2Na1/2)TiO3xBaTiO3 ceramics. J. Am. Ceram. Soc. 94(11), 4040–4044 (2011)CrossRefGoogle Scholar
  8. 8.
    R. Theissmann, L.A. Schmitt, J. Kling, R. Schierholz, K.A. Schönau, H. Fuess, M. Knapp, H. Kungl, M.J. Hoffmann, J. Appl. Phys. 102, 24111 (2007)CrossRefGoogle Scholar
  9. 9.
    Z.Y. Cen, C.Y. Zhou, Q. Zhou, H.B. Yang, X.J. Zhou, J. Cheng, X.L. Ye, Ceram. In. 40, 10431–10439 (2014)CrossRefGoogle Scholar
  10. 10.
    E.M. Anton, W. Jo, D. Damjanovic, A.J. Rödel, J. Appl. Phys. 110, 94108 (2011)CrossRefGoogle Scholar
  11. 11.
    A.K. Jonscher, Dielectric Relaxation in Solids (Dielectric Press, Chelsea, 1983)Google Scholar
  12. 12.
    W.W. Ge, H. Liu, X.Y. Zhao, B.J. Fang, X.B. Li, F.F. Wang, D. Zhou, P. Yu, X.M. Pan, D. Lin, H.S. Luo, J. Phys. D Appl. Phys. 41, 115403–115407 (2008)CrossRefGoogle Scholar
  13. 13.
    A. Chaouchi, S. Kennour, S. d’Astorg, M. Rguiti, C. Courtois, S. Marinel, M. Aliouat, J. Alloy. Compd. 529, 9138–9143 (2011)Google Scholar
  14. 14.
    D.M. Lin, K.W. Kwok, J. Am. Ceram. Soc. 93, 806–813 (2010)CrossRefGoogle Scholar
  15. 15.
    B.P. Pokharel, D. Pandey, J. Appl. Phys. 88, 5364–5373 (2000)CrossRefGoogle Scholar
  16. 16.
    H.L. Du, W.C. Zhou, D.M. Zhu, L. Fa, S.B. Qu, Y. Li, Z.B. Pei, J. Am. Ceram. Soc. 91, 2903–2909 (2008)CrossRefGoogle Scholar
  17. 17.
    K. Uchino, S. Nomura, Ferroelectrics 44, 55–61 (1982)CrossRefGoogle Scholar
  18. 18.
    S. Guillemet-Fritsch, Z. Valdez-Nava, C. Tenailleau, T. Lebey, B. Durand, J.Y. Chane-Ching, Adv. Mater. 20, 551–555 (2008)CrossRefGoogle Scholar
  19. 19.
    M. Li, A. Feteira, D.C. Sinclair, J. Appl. Phys. 98, 84101 (2005)CrossRefGoogle Scholar
  20. 20.
    D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)CrossRefGoogle Scholar
  21. 21.
    T.B. Adams, D.C. Sinclair, A.R. West, Adv. Mater. 14, 1321–1323 (2002)CrossRefGoogle Scholar
  22. 22.
    A.A. Bokov, Z.G. Ye, J. Mater. Sci. 41, 31–52 (2006)CrossRefGoogle Scholar
  23. 23.
    L. E. Cross, ibid 76, 241–267 (1987)Google Scholar
  24. 24.
    F. Gao, L.L. Liu, B. Xu, X.A. Cao, Z.Q. Deng, C.S. Tian, J. Alloy. Compd. 509, 6049–6055 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Zhenyong Cen
    • 1
  • Changrong Zhou
    • 1
  • Xinglang Ye
    • 1
  • Yazhou Zhao
    • 1
  • Fangyu Gan
    • 1
  • Huanhua Zhang
    • 1
  1. 1.School of Material Science and EngineeringGuilin University of Electronic TechnologyGuilinPeople’s Republic of China

Personalised recommendations