Advertisement

Dielectric and spectroscopic features of ZnO–ZnF2–B2O3:MoO3 glass ceramic—a possible material for plasma display panels

  • P. Naresh
  • G. Naga Raju
  • M. Srinivas Reddy
  • T. Venkatappa Rao
  • I. V. Kityk
  • N. Veeraiah
Article

Abstract

ZnO–ZnF2–B2O3 borate glass mixed with different concentrations of MoO3 were synthesized and subsequently crystallized. The X-ray diffraction studies revealed that the samples were embedded with crystalline phases in which molybdenum ions exist in Mo6+ and Mo5+ states. The results of spectroscopic studies (viz., optical absorption and electron spin resonance) have revealed that the there is an increasing proportion of Mo5+ ions with increase in the concentration of MoO3 in the glass ceramic. The results of photoluminescence spectra have indicated that if the care is taken to minimize Mo5+ ion concentration, these glass ceramics are suitable for light emission in the blue, green and red regions. The analysis of the results of IR spectra have indicated that with increase in the content of MoO3 there is an increasing degree of disorder in the glass network. The room temperature dielectric constant of these glass ceramics containing even the highest concentration of MoO3 is always found to be in between 11.5 and 12.4 suggesting that these glass ceramics would be suitable for dielectric layer in plasma display panels (PDP). The dielectric parameters have exhibited relaxation character; the relaxation effects have been attributed to molybdenyl complexes. The observed increase in the electrical conductivity with MoO3 content is attributed to the contribution of polaronic transfer between Mo5+ ⟷ Mo6+ ions. Additionally, the substantial decrement in jump distance for zinc ions between the two sites in the ceramic network (because of increase in the concentration of dangling bonds) is also found to contribute to the conductivity. The value of dielectric breakdown strength for the studied materials is measured to be in the range of 10.54–12.9 kV/cm which is far greater than the required value for a material to be used as dielectric layer in PDP.

Keywords

Electron Spin Resonance MoO3 B2O3 Glass Ceramic Glass Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are grateful to DST, Govt. of India for the financial support through FIST programme to carry out this work.

References

  1. 1.
    D.R. Clarke, J Am Ceram Soc 82, 485–502 (1999)CrossRefGoogle Scholar
  2. 2.
    B.L. Zhu, D.W. Zeng, W.L. Song, A.H. Wang, Mater Chem Phys 89, 148–153 (2005)CrossRefGoogle Scholar
  3. 3.
    D. Liu, D. Tang, L. Ci, X. Yan, Y.N. Liang, Z. Zhou, H. Yuan, W. Zhou, G. Wang, Chin Phys Lett 20, 928–931 (2003)CrossRefGoogle Scholar
  4. 4.
    K.J. Kim, Y.R. Park, Appl Phys Lett 22, 475–477 (2001)CrossRefGoogle Scholar
  5. 5.
    W.S. Shi, O. Agyeman, C.N. Xu, J Appl Phys 91, 5640–5644 (2002)CrossRefGoogle Scholar
  6. 6.
    S.E. Derenzo, M.K. Klintenberg, Nucl Instr Meth Phys Res A 486, 214–219 (2002)CrossRefGoogle Scholar
  7. 7.
    T. Shinoda, M. Wakitani, T. Nanto, N. Awaji, S. Kanagu, Electron Dev 47, 77–81 (2000)CrossRefGoogle Scholar
  8. 8.
    F.H. Wang, H.P. Chang, C.C. Tseng, C.C. Huang, Surf Coat Tech 205, 5269–5277 (2011)CrossRefGoogle Scholar
  9. 9.
    L. Ding, Y. Yang, X. Jiang, C. Zhu, G. Chen, J. Non-Cryst, Solids 354, 1382–1385 (2008)Google Scholar
  10. 10.
    M. Abdel-Baki, F. El-Diasty, J Solid State Chem 184, 2762–2769 (2011)CrossRefGoogle Scholar
  11. 11.
    S. Bale, N.S. Rao, S. Rahman, Solid State Sci 10, 326–331 (2008)CrossRefGoogle Scholar
  12. 12.
    Bondar IA, Toropov NA (1964) In: Porai-Koshits EA (ed) The structure of glass, vol 3, p 35Google Scholar
  13. 13.
    G.V. Rao, P.Y. Reddy, N. Veeraiah, Mater Lett 57, 403–408 (2002)CrossRefGoogle Scholar
  14. 14.
    P.W. McMillan 2nd (ed.), Glass-ceramics (Academic Press, London, 1979)Google Scholar
  15. 15.
    L.S. Rao, M.S. Reddy, D.K. Rao, N. Veeraiah, J Solid State Sci 11, 578–587 (2009)CrossRefGoogle Scholar
  16. 16.
    Z. Hussain, J Electron Mater 31, 615–630 (2002)CrossRefGoogle Scholar
  17. 17.
    P. Naresh, G. Naga Raju, C.S. Rao, S.V.G.V.A. Prasad, V. Ravi Kumar, N. Veeraiah, Phys B 407, 712–718 (2012)CrossRefGoogle Scholar
  18. 18.
    F. Kohlmuller, Bull. Chim. Fr., 4379 (1968)Google Scholar
  19. 19.
    J.C. Couturier, Rev Chim Miner 22, 753 (1986)Google Scholar
  20. 20.
    K.J. Rao, Structural Chemistry of Glasses (Elsevier, Amsterdam, 2002)Google Scholar
  21. 21.
    K. Chen, Introduction to non-cryst. Semiconductor physics (Chinease Academy Press, Beijing, 1987)Google Scholar
  22. 22.
    G.L. Flower, G.S. Baskaran, N. Veeraiah, Mater Chem Phys 100, 211–216 (2006)CrossRefGoogle Scholar
  23. 23.
    W. Vogel, Glass chemistry (Springer, Berlin, 1994)CrossRefGoogle Scholar
  24. 24.
    N. Machida, H. Eckert, Solid State Ion 107, 255–268 (1998)CrossRefGoogle Scholar
  25. 25.
    T. Komatsu, N. Soga, M. Kunugi, J Appl Phys 50, 6469–6474 (1979)CrossRefGoogle Scholar
  26. 26.
    G. Srinivasarao, N. Veeraiah, J Solid State Chem 166, 104–117 (2002)CrossRefGoogle Scholar
  27. 27.
    C.J.F. Böttcher, P. Bordewijk, Theory of electrical polarization (Elsevier, Amsterdam, 1978)Google Scholar
  28. 28.
    K. Srilatha, K.S. Rao, Y. Gandhi, V.R. Kumar, N. Veeraiah, J Alloys Compd 507, 391–398 (2010)CrossRefGoogle Scholar
  29. 29.
    T. Srikumar, ChS Rao, Y. Gandhi, N. Venkatramaiah, V. Ravikumar, N. Veeraiah, J Phys Chem Solids 72, 190–200 (2011)CrossRefGoogle Scholar
  30. 30.
    L. Pavic, N.N. Rao, A.M. Milankovic, A. Santic, V. Ravi Kumar, M. Piasecki, I.V. Kityk, N. Veeraiah, Ceram Int 40, 5989–5996 (2014)CrossRefGoogle Scholar
  31. 31.
    E.T.Y. Lee, E.R.M. Taylor, J Phys Chem Solids 66, 47–51 (2005)CrossRefGoogle Scholar
  32. 32.
    R.K. Brow, J. Non-Cryst, Solids 194, 267–273 (1996)Google Scholar
  33. 33.
    P. Syam Prasad, M.S. Reddy, V. Ravi Kumar, N. Veeraiah, Philos Mag 87, 5763–5787 (2007)CrossRefGoogle Scholar
  34. 34.
    F. Branda, A. Buri, A. Marotta, S. Saiello, Thermochim Acta 77, 13–18 (1984)CrossRefGoogle Scholar
  35. 35.
    R. Lordanova, Y. Dimitriev, S. Kassabov, D. Klissurski, J Non Cryst Solids 231, 227–233 (1998)Google Scholar
  36. 36.
    G. Calas, M. Le Grand, L. Galoisy, D. Ghaleb, J Nucl Mater 322, 15–20 (2003)CrossRefGoogle Scholar
  37. 37.
    O. Cozar, D.A. Magdas, I. Ardelean, Non Cryst Solids 354, 1032–1035 (2008)CrossRefGoogle Scholar
  38. 38.
    B.V.R. Chowdari, P. Pramoda, Kumari. Solid State Ion 113, 665–675 (1998)CrossRefGoogle Scholar
  39. 39.
    N.Y. Garces, M.M. Chirila, H.J. Murphy, J.W. Foise, E.A. Thomas, C. Wicks, K. Grencewicz, L.E. Halliburton, N.C. Giles, J Phys Chem Solids 64, 1195–1200 (2003)CrossRefGoogle Scholar
  40. 40.
    D. Boudlich, M. Haddad, R. Berger, J. Kliava, J Non Cryst Solids 224, 135–142 (1998)CrossRefGoogle Scholar
  41. 41.
    A. Bals, J. Kliava, J Magn Reson 53, 243 (1983)Google Scholar
  42. 42.
    M. Nagarjuna, T. Satyanarayana, V. Ravi Kumar, N. Veeraiah, Phys B 404, 3748–3755 (2009)CrossRefGoogle Scholar
  43. 43.
    R. Berger, P. Beziade, A. Levasseur, Y. Servant, J Phys Chem Glasses 31, 231 (1990)Google Scholar
  44. 44.
    A.V. Rao, C. Laxmikanth, B.A. Rao, N. Veeraiah, J Phys Chem Solids 67, 2263–2274 (2006)CrossRefGoogle Scholar
  45. 45.
    D.K. Durga, N. Veeraiah, J Phys Chem Solids 64, 133–146 (2003)CrossRefGoogle Scholar
  46. 46.
    P.N. Rao, B.V. Raghavaiah, D.K. Rao, N. Veeraiah, Mater Chem Phys 91, 381–390 (2005)CrossRefGoogle Scholar
  47. 47.
    T. Satyanarayana, I.V. Kityk, M. Piasecki, P. Bragiel, M.G. Brik, Y. Gandhi, N. Veeraiah, J Phys Condens Matter 21, 245104–245112 (2009)CrossRefGoogle Scholar
  48. 48.
    P. Naresh, G. Naga Raju, V. Ravi Kumar, M. Piasecki, I.V. Kiytyk, N. Veeraiah, Ceram Int 40, 2249–2260 (2014)CrossRefGoogle Scholar
  49. 49.
    P. Raghava Rao, L. Pavić, A. Moguš-Milanković, V. Ravi Kumar, I.V. Kityk, N. Veeraiah, J Non Cryst Solids 358, 3255–3267 (2012)CrossRefGoogle Scholar
  50. 50.
    S. Mukherjee, A.K. Pal, J Phys Condens Matter 20, 255202–255211 (2008)CrossRefGoogle Scholar
  51. 51.
    A. Gajovic, A. Santic, I. Djerdj, N. Tomasic, A. Mogus-Milankovic, D. Sheng Su, J Alloys Compd 479, 525–531 (2009)CrossRefGoogle Scholar
  52. 52.
    S.R. Elliott, Adv Phys 36, 135 (1987)CrossRefGoogle Scholar
  53. 53.
    C. Cramer, K. Funke, B. Roling, T. Saatkamp, D. Wilmer, M.D. Ingram, A. Pradel, M. Ribes, G. Taillades, Solid State Ion 86, 481–486 (1996)CrossRefGoogle Scholar
  54. 54.
    I.G. Austin, N.F. Mott, Adv Phys 18, 41–102 (1969)CrossRefGoogle Scholar
  55. 55.
    R. Vijay, P. Ramesh Babu, B.V. Raghavaiah, P.M. Vinaya Teja, M. Piasecki, N. Veeraiah, D. Krishan Rao, J Non Cryst Solids 386, 67–75 (2014)CrossRefGoogle Scholar
  56. 56.
    S. Joon-Young, S. Young Cho, Displays 27, 112–116 (2006)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • P. Naresh
    • 1
    • 2
  • G. Naga Raju
    • 2
  • M. Srinivas Reddy
    • 3
  • T. Venkatappa Rao
    • 4
  • I. V. Kityk
    • 5
  • N. Veeraiah
    • 1
  1. 1.Department of PhysicsAcharya Nagarjuna UniversityGunturIndia
  2. 2.Department of PhysicsKrishna UniversityNuzvidIndia
  3. 3.Department of Physics, University College of Engineering and TechnologyAcharya Nagarjuna UniversityGunturIndia
  4. 4.Department of PhysicsNational Institute of TechnologyWarangalIndia
  5. 5.Electrical Engineering DepartmentTechnical University of CzestochowaCzestochowaPoland

Personalised recommendations