Modeling defect reactions processes to study the impact of carbon on the production and conversion of A-centers in silicon



The vacancy-oxygen (VO or A-center) defect is one of the most significant defects in Czochralski-grown silicon (Cz-Si). Here we investigate the effect of carbon on the formation of VO defect and its conversion upon annealing to the VO2 defect. Cz-Si samples with various carbon concentrations were irradiated by 2 MeV electrons. The formation of VO pair, its thermal stability and evolution and its conversion to the VO2 defect were previously monitored and studied by means of infrared (IR) spectroscopy. Modeling of the formation process showed that the VO concentration has a square root dependency on the carbon substitutional (Cs) concentration. The conversion of the VO to the VO2 defect decreases with the increase of the Cs concentration. The results are in agreement with the experimental observed dependency of the conversion ratio on the Cs concentration, since [VO] increases when [Cs] increases.


Carbon Concentration Conversion Ratio Defect Reaction Root Dependency Local Vibrational Mode 



The authors thank Prof. Vladimir Voronkov for valuable discussions.


  1. 1.
    E.N. Sgourou, D. Timarkaeva, C.A. Londos, D. Aliprantis, A. Chroneos, D. Caliste, P. Pochet, J. Appl. Phys. 113, 113506 (2013)Google Scholar
  2. 2.
    A. Chroneos, C.A. Londos, E.N. Sgourou, P. Pochet, Appl. Phys. Lett. 99, 241901 (2011)CrossRefGoogle Scholar
  3. 3.
    C. Gao, X. Ma, J. Zhao, D. Yang, J. Appl. Phys. 113, 093511 (2013)CrossRefGoogle Scholar
  4. 4.
    H. Wang, A. Chroneos, C.A. Londos, E.N. Sgourou, U. Schwingenschlögl, Appl. Phys. Lett. 103, 052101 (2013)CrossRefGoogle Scholar
  5. 5.
    A. Chroneos, H. Bracht, R.W. Grimes, B.P. Uberuaga, Mater. Eng. B 72, 154 (2008)Google Scholar
  6. 6.
    W. Lin, in Oxygen in Silicon, Semiconductors and Semimetals, vol. 42, ed. by F. Shimura (Academic, Boston, 1994), p. 9Google Scholar
  7. 7.
    B. Pajot, in Oxygen in Silicon, Semiconductors and Semimetals, vol. 42, ed. by F. Shimura (Academic, Boston, 1994), p. 191Google Scholar
  8. 8.
    W. Kaiser, H.L. Frisch, H. Reiss, Phys. Rev. 112, 1546 (1958)CrossRefGoogle Scholar
  9. 9.
    R.C. Newman, R. Jones, in “Oxygen in silicon” in Semiconductors and Semimetals, vol. 42, ed. by F. Shimura (Academic Press, Orlando, 1994), p. 289Google Scholar
  10. 10.
    G. Davies, R.C. Newman, in In Handbook of Semiconductors, vol. 3, ed. by S. Maharajan (Elsevier, Amsterdam, 1994), p. 1557Google Scholar
  11. 11.
    S.D. Brotherton, P. Bradley, J. Appl. Phys. 53, 5720 (1982)CrossRefGoogle Scholar
  12. 12.
    G.D. Watkins, J.W. Corbett, Phys. Rev. 121, 1001 (1961)CrossRefGoogle Scholar
  13. 13.
    J.W. Corbett, G.D. Watkins, R.S. Mc Donald, Phys. Rev. A 135, 1381 (1964)CrossRefGoogle Scholar
  14. 14.
    C.A. Londos, N.V. Sarlis, L.G. Fytros, K. Papastergiou, Phys. Rev. B 53, 6900 (1996)CrossRefGoogle Scholar
  15. 15.
    H.J. Stein, Mater. Sci. Forum 10–12, 935 (1986)CrossRefGoogle Scholar
  16. 16.
    V.V. Voronkov, R. Falster, J. Cryst. Growth 204, 462 (1999)CrossRefGoogle Scholar
  17. 17.
    V.V. Voronkov, R. Falster, J. Electrochem. Soc. 149, G167 (2002)CrossRefGoogle Scholar
  18. 18.
    G. Kissinger, J. Dabrowski, A. Sattler, C. Serving, T. Müller, H. Richter, W. von Ammon, J. Electrochem. Soc. 154, H454 (2007)CrossRefGoogle Scholar
  19. 19.
    G. Davies, A.S. Oates, R.C. Newman, R. Woolley, E.C. Lightowlers, M.J. Binns, J.G. Wilkes, J. Phys. C Solid State Phys. 19, 841 (1986)CrossRefGoogle Scholar
  20. 20.
    C.A. Londos, Semicond. Sci. Technol. 5, 645 (1990)CrossRefGoogle Scholar
  21. 21.
    V.V. Voronkov, R. Falster, C.A. Londos, E.N. Sgourou, A. Andrianakis, J. Appl. Phys. 110, 093510 (2011)CrossRefGoogle Scholar
  22. 22.
    A. Chroneos, C.A. Londos, E.N. Sgourou, J. Appl. Phys. 110, 093507 (2011)CrossRefGoogle Scholar
  23. 23.
    C.A. Londos, E.N. Sgourou, A. Chroneos, J. Mater. Sci. Mater. Electron. 25, 914 (2014)CrossRefGoogle Scholar
  24. 24.
    H. Wang, A. Chroneos, C.A. Londos, E.N. Sgourou, U. Schwingenschlögl, Sci. Rep. 4, 4909 (2014)Google Scholar
  25. 25.
    G. Lindström et al., Nucl. Instrum. Meth. Phys. Rev. A 466, 308 (2001)CrossRefGoogle Scholar
  26. 26.
    J.W. Corbett, G.D. Watkins, R.M. Chrenko, R.S. Mc, Donald. Phys. Rev. 121, 1015 (1961)CrossRefGoogle Scholar
  27. 27.
    A.R. Bean, R.C. Newman, R.S. Smith, J. Phys. Chem. Solids 31, 739 (1970)CrossRefGoogle Scholar
  28. 28.
    V.D. Ahmetov, V.V. Bolotov, Radiat. Eff. 52, 149 (1980)CrossRefGoogle Scholar
  29. 29.
    G. Davies, E.C. Lightowlers, R.C. Newman, A.S. Oates, Semicond. Sci. Technol. 2, 524 (1987)CrossRefGoogle Scholar
  30. 30.
    B.G. Svensson, J.L. Lindström, Phys. Rev. B 34, 8709 (1986)CrossRefGoogle Scholar
  31. 31.
    C.A. Londos, N.V. Sarlis, L.G. Fytros, Phys. Stat. Sol. A 163, 325 (1997)CrossRefGoogle Scholar
  32. 32.
    C.A. Londos, G.J. Antonaras, M.S. Potsidi, A. Misiuk, I.V. Antonova, V.V. Emtsev, J. Phys.: Condens. Matter 17, S2341 (2005)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Solid State Physics SectionUniversity of AthensAthensGreece
  2. 2.Faculty of Engineering and ComputingCoventry UniversityCoventryUK
  3. 3.Department of MaterialsImperial CollegeLondonUK

Personalised recommendations