Raman spectroscopy of indium phosphide nanowire networks coated with gold clusters

  • Junce Zhang
  • David M. Fryauf
  • Kate J. Norris
  • Min Wei
  • Juan J. Diaz Leon
  • Nobuhiko P. Kobayashi


Enhanced Raman signal of the longitudinal optical phonon mode in indium phosphide nanowire networks with gold coating of up to 5 nm thickness was observed experimentally to further study the phonon spectrum of nanowire networks. Indium phosphide nanowire networks coated with different nominal thicknesses of gold were prepared and optically studied. Scanning electron microscopy, photoluminescence spectroscopy and Raman spectroscopy were used to study the dependence of surface morphology and phonon modes of the nanowire networks on the nominal thickness of the gold coating. The Raman peak of longitudinal optical phonon mode for as grown sample was negligible, while the peak intensity for 1 and 5 nm gold coated sample reached to 1,379 and 792 a.u. respectively. Electromagnetic enhancement and extinction coefficient are discussed to qualitatively assess the role of the gold coating on indium phosphide nanowire networks.


Gold Nanoparticles Raman Spectroscopy SERS Localize Surface Plasmon Resonance Raman Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by NASA SBIR NNX11CE14P. This work is also partially supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-0809125 and Semiconductor Research Corporation CSR fund (Dr. Victor Zhirnov). We would like to thank Quantum Systems Laboratory at Hewlett-Packard Laboratories (Palo Alto, California) and the MACS facility (Moffett Field, California) at the Advanced Studies Laboratories, a strategic partnership between the University of California Santa Cruz and NASA Ames Research Center, for their continuous support on analytical equipment.


  1. 1.
    N.P. Kobayashi, S.Y. Wang, C. Santori, R.S. Williams, Jpn. J. Appl. Phys. 46, 6346 (2007)CrossRefGoogle Scholar
  2. 2.
    N.P. Kobayashi, S. Mathai, X. Li, V.J. Logeeswaran, M.S. Islam, A. Lohn, R.S. Williams, Appl. Phys. A 95, 1005 (2009)CrossRefGoogle Scholar
  3. 3.
    A.J. Lohn, N. Dawson, R. Cormia, D. Fryauf, J. Zhang, N.J. Norris, N.P. Kobayashi, In SPIE NanoScience + Engineering San Diego, United States, 12–14 August 2012 (International Society for Optics and Photonics 2012) pp. 84670UGoogle Scholar
  4. 4.
    A.J. Lohn, T. Onishi, N.P. Kobayashi, Nanotechnology 21, 355702 (2010)CrossRefGoogle Scholar
  5. 5.
    N.P. Kobayashi, L. Vj, M. Saif Islam, X. Li, J. Straznicky, S. Y. Wang, Y. Chen, Appl. Phys. Lett. 91, 113116–113116 (2007)Google Scholar
  6. 6.
    W.H. Weber, R. Merlin, Raman Scattering in Materials Science (Springer, New York, 2000)CrossRefGoogle Scholar
  7. 7.
    A. Campion, K. Patanjali, Chem. Soc. Rev. 27, 241–250 (1998)CrossRefGoogle Scholar
  8. 8.
    A. Roguska, A. Kudelski, M. Pisarek, M. Opara, M. Janik-Czachor, Appl. Surf. Sci. 257, 8182–8189 (2011)CrossRefGoogle Scholar
  9. 9.
    Y.Q. Wang, S. Ma, Q.Q. Yang, X.J. Li, Appl. Surf. Sci. 258, 5881–5885 (2012)CrossRefGoogle Scholar
  10. 10.
    C.E. Talley, J.B. Jackson, C. Oubre, N.K. Grady, C.W. Hollars, S.M. Lane, N.J. Halas, Nano Lett. 5, 1569–1574 (2005)CrossRefGoogle Scholar
  11. 11.
    P.K. Jain, K.S. Lee, I.H. El-Sayed, M.A. El-Sayed, J. Phys. Chem. B 110, 7238–7248 (2006)CrossRefGoogle Scholar
  12. 12.
    L. Artús, R. Cuscó, J.M. Martin, G. Gonzalez-Diaz, Phys. Rev. B 50, 11552 (1994)CrossRefGoogle Scholar
  13. 13.
    H. Xu, J. Aizpurua, M. Käll, P. Apell, Phys. Rev. E 62, 4318 (2000)CrossRefGoogle Scholar
  14. 14.
    J.M. McMahon, A.I. Henry, K.L. Wustholz, M.J. Natan, R.G. Freeman, R.P. Van Duyne, G.C. Schatz, Anal. Biochem. 394(7), 1819–1825 (2009)Google Scholar
  15. 15.
    Z.Q. Tian, Z.L. Yang, B. Ren, J.F. Li, W. Zhang, X.F. Lin, Y. Zhang, X.F. Lin, J.W. Hu, D.Y. Wu, Faraday discuss. 132, 159–170 (2006)Google Scholar
  16. 16.
    J. Chen, T. Mårtensson, K.A. Dick, K. Deppert, H.Q. Xu, L. Samuelson, H. Xu, Nanotechnol. 19, 275712 (2008)CrossRefGoogle Scholar
  17. 17.
    S. Hong, X. Li, J. Nanomater. 49, 3014–3017 (2013)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Junce Zhang
    • 1
    • 2
  • David M. Fryauf
    • 1
    • 2
  • Kate J. Norris
    • 1
    • 2
  • Min Wei
    • 3
  • Juan J. Diaz Leon
    • 1
    • 2
  • Nobuhiko P. Kobayashi
    • 1
    • 2
  1. 1.Baskin School of EngineeringUniversity of California Santa CruzSanta CruzUSA
  2. 2.Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, NASA Ames Research CenterUniversity of California Santa CruzMoffett FieldUSA
  3. 3.School of Micro-Electronics and Solid-ElectronicsUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations