Advertisement

Facile preparation of Ag3PO4 rhombic dodecahedron microcrystals with enhanced catalytic activities under visible light irradiation

  • Ramesh Rajendran
  • Manoj Pudukudy
  • Subramaniam Sohila
  • Zahira Yaakob
  • Muhammad Syukri Abd Rahaman
Article

Abstract

Rhombic dodecahedron shaped Ag3PO4 microcrystals were prepared by hydrothermal treatment of as-precipitated Ag3PO4 products. The phase formation and morphology of the synthesized products were characterized by powder X-ray diffraction and field emission scanning electron microscopy. Experimental results revealed that hydrothermal reaction time can effectively influence the formation of rhombic dodecahedron-shaped Ag3PO4 microcrystals. The possible formation mechanism for rhombic dodecahedrons morphology was studied. Moreover, the rhombic dodecahedron-shaped Ag3PO4 microcrystals such as 48 h hydrothermally treated sample exhibited higher catalytic activity than as-precipitated and 12 h hydrothermally treated samples under visible light irradiation for the degradation of methylene blue. The enhanced photocatalytic activities of rhombic dodecahedron-shaped Ag3PO4 microcrystals is attributed to the existence of most exposed {110} facets.

Keywords

Photocatalytic Activity Methylene Blue Hydrothermal Treatment Visible Light Irradiation Visible Light Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C.A.K. Gouvêa, F. Wypych, S.G. Moraes, N. Durán, N. Nagata, P.P. Zamora, Chemosphere 40, 433 (2000)CrossRefGoogle Scholar
  2. 2.
    Q.J. Xiang, J.G. Yu, W.G. Wang, M. Jaroniec, Chem. Commun. 47, 6906 (2011)CrossRefGoogle Scholar
  3. 3.
    D.B. Ingram, S. Linic, J. Am. Chem. Soc. 133, 5202 (2011)CrossRefGoogle Scholar
  4. 4.
    G. Tian, H. Fu, L. Jing, B. Xin, K. Pan, J. Phys. Chem. C 112, 3083 (2008)CrossRefGoogle Scholar
  5. 5.
    Z.L. Ma, G.F. Huang, D.S. Xub, M.G. Xia, W.Q. Huang, Y. Tian, Mater. Lett. 108, 37 (2013)CrossRefGoogle Scholar
  6. 6.
    M. Qamar, Int. J. Nanosci. 09, 579 (2010)CrossRefGoogle Scholar
  7. 7.
    Z.M. Yang, Y. Tian, G.F. Huang, W.Q. Huang, Y.Y. Liu, C. Jiao et al., Mater. Lett. 116, 209 (2014)CrossRefGoogle Scholar
  8. 8.
    G.F. Huang, Z.L. Ma, W.Q. Huang, Y. Tian, C. Jiao, Z.M. Yang et al., J. Nanomater. 2013, 1 (2013)Google Scholar
  9. 9.
    A. Khan, M. Qamar, M. Muneer, Chem. Phys. Lett. 519–520, 54 (2012)CrossRefGoogle Scholar
  10. 10.
    J. Wang, F. Teng, M. Chen, J. Xu, Y. Song, X. Zhou, Cryst. Eng. Commun. 15, 39 (2013)CrossRefGoogle Scholar
  11. 11.
    H. Wang, L. He, L. Wang, P. Hu, L. Guo, X. Han et al., Cryst. Eng. Commun. 14, 8342 (2012)CrossRefGoogle Scholar
  12. 12.
    M. Ge, N. Zhu, Y. Zhao, J. Li, L. Liu, Ind. Eng. Chem. Res. 51, 5167 (2012)CrossRefGoogle Scholar
  13. 13.
    Z. Lou, B. Huang, Z. Wang, R. Zhang, Y. Yang, X. Qin et al., Cryst. Eng. Commun. 15, 5070 (2013)CrossRefGoogle Scholar
  14. 14.
    H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Adv. Mater. 24, 229 (2012)CrossRefGoogle Scholar
  15. 15.
    Y. Bi, S. Ouyang, J. Cao, J. Ye, Phys. Chem. Chem. Phys. 13, 10071 (2011)CrossRefGoogle Scholar
  16. 16.
    Y. Bi, S. Ouyang, N. Umezawa, J. Cao, J. Ye, J. Am. Chem. Soc. 133, 6490 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ramesh Rajendran
    • 1
  • Manoj Pudukudy
    • 1
  • Subramaniam Sohila
    • 1
  • Zahira Yaakob
    • 1
  • Muhammad Syukri Abd Rahaman
    • 1
  1. 1.Department of Chemical and Process Engineering, Faculty of Engineering and Built EnvironmentUniversiti Kebangsaan Malaysia (UKM)BangiMalaysia

Personalised recommendations