Comprehensive study of graphene grown by chemical vapor deposition



Graphene was grown on Cu foil by chemical vapor deposition with CH4 as carbon source, and then was transferred onto various substrates for device applications. The structural and optical properties of graphene were investigated, comprehensively. Raman spectra indicate as-grown and transferred graphene films are homogenous monolayer graphene. Optical microscopy and scanning electron microscopy images reveal wrinkle-free and smooth surface of transferred graphene, confirming the high quality of graphene. In addition, the transferred graphene on glass exhibits excellent transmittances in the visible region (89.3 % at ~500 nm). Therefore, the results present the controllable approaches to achieve as-grown and transferred high quality graphene for the fabrication of multiple nanoelectronic devices.


Raman Spectrum Chemical Vapor Deposition Graphitic Carbon Monolayer Graphene Chemical Vapor Deposition Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work is supported by the Talent Plan at Anhui University of Technology. The authors acknowledge Peng Li from Hefei University of Technology for his help in graphene transfer.


  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)CrossRefGoogle Scholar
  2. 2.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)CrossRefGoogle Scholar
  3. 3.
    M.O. Goerbig, Rev. Mod. Phys. 83, 1193 (2011)CrossRefGoogle Scholar
  4. 4.
    X.L. Wang, S.X. Dou, C. Zhang, NPG Asia Mater. 2, 31 (2010)CrossRefGoogle Scholar
  5. 5.
    V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Prog. Mater. Sci. 56, 1178 (2011)CrossRefGoogle Scholar
  6. 6.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)CrossRefGoogle Scholar
  7. 7.
    A.K. Geim, Science 324, 1530 (2009)CrossRefGoogle Scholar
  8. 8.
    S.S. Chen, Q.Z. Wu, C. Mishra, J. Kang, H.J. Zhang, K. Cho, W.W. Cai, A.A. Balandinand, R.S. Ruoff, Nat. Mater. 11, 203 (2012)CrossRefGoogle Scholar
  9. 9.
    A.A. Balandin, S. Ghosh, W.Z. Bao, S. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)CrossRefGoogle Scholar
  10. 10.
    Y. Wang, R. Yang, Z.W. Shi, L.C. Zhang, D.X. Shi, E.G. Wang, G.Y. Zhang, ACS Nano 5, 3645 (2011)CrossRefGoogle Scholar
  11. 11.
    L.X. Zhou, Y.G. Wang, G.X. Cao, J. Phys. Condens. Matter 25, 125302 (2013)CrossRefGoogle Scholar
  12. 12.
    F. Schwierz, Nat. Nanotechnol. 5, 487 (2010)CrossRefGoogle Scholar
  13. 13.
    M.F. Craciun, S. Russo, M. Yamamoto, S. Tarucha, Nano Today 6, 42 (2011)CrossRefGoogle Scholar
  14. 14.
    Y.Q. Wu, D.B. Farmer, F.N. Xia, P. Avouris, Proc. IEEE 101, 1620 (2013)CrossRefGoogle Scholar
  15. 15.
    X.S. Li, W.W. Cai, J. An, S. Kim, J. Nah, D.X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Science 324, 1312 (2009)CrossRefGoogle Scholar
  16. 16.
    R.S. Edwards, K.S. Coleman, Acc. Chem. Res. 46, 23 (2013)CrossRefGoogle Scholar
  17. 17.
    A.A. Green, M.C. Hersam, Nano Lett. 12, 4031 (2009)CrossRefGoogle Scholar
  18. 18.
    K. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Röhrl, E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber, T. Seyller, Nat. Mater. 8, 203 (2009)CrossRefGoogle Scholar
  19. 19.
    Z.Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, J.M. Tour, Nature 468, 549 (2010)CrossRefGoogle Scholar
  20. 20.
    S.F. Song, J.P. Zhao, J.H. Du, W.C. Ren, H.-M. Cheng, Carbon 48, 4466 (2010)CrossRefGoogle Scholar
  21. 21.
    D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, P.B. Katherine, J.M. Tour, Nature 458, 872 (2009)CrossRefGoogle Scholar
  22. 22.
    L. Huang, Q.H. Chang, G.L. Guo, Y. Liu, Y.Q. Xie, T. Wang, B. Ling, H.F. Yang, Carbon 50, 551 (2012)CrossRefGoogle Scholar
  23. 23.
    Y.Z. Xue, B. Wu, Y.L. Guo, L.P. Huang, L. Jiang, J.Y. Chen, D.C. Geng, Y.Q. Liu, W.P. Hu, G. Yu, Nano Res. 4, 1208 (2011)CrossRefGoogle Scholar
  24. 24.
    H. Ago, Y. Ito, N. Mizuta, K. Yoshida, B. Hu, C.M. Orofeo, M. Tsuji, K.-I. Ikeda, S. Mizuno, ACS Nano 12, 7407 (2010)CrossRefGoogle Scholar
  25. 25.
    Y. Zhang, L.Y. Zhang, C.W. Zhou, Acc. Chem. Res. 46, 2329 (2013)CrossRefGoogle Scholar
  26. 26.
    S. Bae, H. Kim, Y.B. Lee, X.F. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y. Song, Y.-J. Kim, K.S. Kim, B. Özyilmaz, J.-H. Ahn, B.H. Hong, S. Iijima, Nat. Nanotechnol. 5, 574 (2010)CrossRefGoogle Scholar
  27. 27.
    T. Kobayashi, M. Bando, N. Kimura, K. Shimizu, K. Kadono, N. Umezu, K. Miyahara, S. Hayazaki, S. Nagai, Y. Mizuguchi, Y. Murakami, D. Hobara, Appl. Phys. Lett. 102, 023112 (2013)CrossRefGoogle Scholar
  28. 28.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)CrossRefGoogle Scholar
  29. 29.
    A.C. Ferrari, Solid State Commun. 143, 47 (2007)CrossRefGoogle Scholar
  30. 30.
    J. Hodkiewicz, Characterizing carbon materials with Raman spectroscopy, Thermo scientific, Application note 51901.
  31. 31.
    M.S. Dresselhaus, A. Jorio, R. Saito, Annu. Rev. Condens. Matter Phys. 1, 89 (2010)CrossRefGoogle Scholar
  32. 32.
    B. Wang, Y.H. Zhang, Z.Y. Chen, Y.W. Wu, Z. Jin, Z.Y. Liu, L.Z. Hu, G.H. Yu, Mater. Lett. 93, 165 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringAnhui University of TechnologyMaanshanChina
  2. 2.Center for Analysis and Testing and Department of PhysicsNanjing Normal UniversityNanjingChina

Personalised recommendations