Influence of Al2O3/SiO2 ratio on the microstructure and properties of low temperature co-fired CaO–Al2O3–SiO2 based ceramics

  • Zhenjun Qing
  • Bo Li
  • Hao Li
  • Yingxiang Li
  • Shuren Zhang


In this work, in order to obtain the materials for low temperature co-fired ceramics applications, CaO–Al2O3–SiO2 (CAS) based ceramics were synthesized at a low sintering temperature of 900 °C. The influences of Al2O3/SiO2 ratio on the microstructure, mechanical, electrical and thermal properties were studied. According to the X-ray diffractomer and scanning electron microscopy results, the addition of the Al2O3 is advantageous for the formation of the desired materials. Anorthite(CaAl2Si2O8) is the major crystal phase of the ceramics, and the SiO2 phase is identified as the secondary crystal phase. No new crystal phase appears in the ceramics with the increasing Al2O3 content. More or less Al2O3 addition would all worsen the sintering, mechanical and dielectric properties of CAS based ceramics. The ceramic specimen (Al2O3/SiO2 = 20/18.5) sintered at 900 °C shows good properties: high bending strength = 145 MPa, low dielectric constant = 5.8, low dielectric loss = 1.3 × 10−3 and low coefficient of thermal expansion value = 5.3 × 10−6 K−1. The results indicate that the prepared CAS based ceramic is one of the candidates for low temperature co-fired ceramic applications.


Al2O3 Content Differential Scanning Calorimeter Curve SiO2 Phase Increase Al2O3 Content Specimen CAS3 


  1. 1.
    M. Liu, H.Q. Zhou, X.Y. Xu, Z.X. Yue, M. Liu, H.K. Zhu, Sintering, densification and crystallization of Ca–Al–B–Si–O glass/Al2O3 composites for LTCC application. J. Mater. Sci. Mater. Electron. 24(10), 3985–3994 (2013)CrossRefGoogle Scholar
  2. 2.
    J.F. Wu, Z. Li, H. He, Y.Q. Huang, H.J. Wu, Preparation of forsterite-based glass ceramics for LTCC from potassium feldspar. J. Mater. Sci. Mater. Electron. 24(7), 2271–2276 (2013)CrossRefGoogle Scholar
  3. 3.
    X.Y. Chen, W.J. Zhang, S.X. Bai, Y.G. Du, Densification and characterization of SiO2–B2O3–CaO–MgO glass/Al2O3 composites for LTCC application. Ceram. Int. 39(6), 6355–6361 (2013)CrossRefGoogle Scholar
  4. 4.
    L.T. He, G.B. Xia, D.A. Yang, Synthesis and characterization of LTCC composites based on the spodumene/anorthite crystallizable glass. J. Alloy. Compd. 556, 12–19 (2013)CrossRefGoogle Scholar
  5. 5.
    E. Horvath, G. Henap, A. Torok, G. Harsanyi, Mechanical characterization of glass–ceramics substrate with embedded microstructure. J. Mater. Sci. Mater. Electron. 23(12), 2123–2129 (2012)CrossRefGoogle Scholar
  6. 6.
    Z.J. Qing, B. Li, H. Li, Y.X. Li, S.R. Zhang, Effects of MgO on properties of Li2O–Al2O3–SiO2 glass–ceramics for LTCC applications. J. Mater. Sci. Mater. Electron. 25(5), 2149–2154 (2014)CrossRefGoogle Scholar
  7. 7.
    M.W. Chang, S.H. Lyoo, H.S. Choo, J.M. Lee, Properties of glasses based on the CaO–MgO–SiO2 system for low-temperature co-fired ceramic. Ceram. Int. 35(6), 2513–2515 (2009)CrossRefGoogle Scholar
  8. 8.
    M. Rauscher, A. Roosen, Influence of low-temperature co-fired ceramics green tape characteristics on shrinkage behavior. Int. J. Appl. Ceram. Technol. 4(5), 387–397 (2007)CrossRefGoogle Scholar
  9. 9.
    G.B. Xia, L.T. He, D.A. Yang, Preparation and characterization of CaO–Al2O3–SiO2 glass/fused silica composites for LTCC application. J. Alloy. Compd. 531, 70–76 (2012)CrossRefGoogle Scholar
  10. 10.
    C.J.D. Kumar, E.K. Sunny, N. Raghu, N. Venkataramani, A.R. Kulkarni, Synthesis and characterization of crystallizable anorthite-based glass for a low-temperature cofired ceramic application. J. Am. Ceram. Soc. 91(2), 652–655 (2008)CrossRefGoogle Scholar
  11. 11.
    K. Makarovic, A. Meden, M. Hrovat, J. Holc, A. Bencan, A. Dakskobler, M. Kosec, The effect of processing conditions on the properties of LTCC material. J. Am. Ceram. Soc. 95(2), 760–767 (2012)CrossRefGoogle Scholar
  12. 12.
    J.F. Wu, Z. Li, Y.Q. Huang, F. Li, Q.R. Yang, Fabrication and characterization of low temperature co-fired cordierite glass–ceramics from potassium feldspar. J. Alloy. Compd. 583, 248–253 (2014)CrossRefGoogle Scholar
  13. 13.
    S.O. Yoon, S.H. Shim, K.S. Kim, J.G. Park, S. Kim, Low-temperature preparation and microwave dielectric properties of ZBS glass–Al2O3 composites. Ceram. Int. 35(3), 1271–1275 (2009)CrossRefGoogle Scholar
  14. 14.
    J. Du, B. Jones, M. Lanagan, Preparation and characterization of dielectric glass–ceramics in Na2O–PbO–Nb2O5–SiO2 system. Mater. Lett. 59(22), 2821–2826 (2005)CrossRefGoogle Scholar
  15. 15.
    M.K. Zitani, M. Rezvani, R.A. Tabrizi, Crystallization, sinterability and microwave dielectric properties of CaO–SiO2–Na2O–MgO glass ceramics containing Fe2O3 and ZnO. Electron. Mater. Lett. 10(1), 131–137 (2014)CrossRefGoogle Scholar
  16. 16.
    A.X. Lu, Z.B. Ke, Z.H. Xiao, X.F. Zhang, X.Y. Li, Effect of heat-treatment condition on crystallization behavior and thermal expansion coefficient of Li2O–ZnO–Al2O3–SiO2–P2O5 glass–ceramics. J. Non Cryst. Solids 353(28), 2692–2697 (2007)CrossRefGoogle Scholar
  17. 17.
    M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: a review. Int. Mater. Rev. 53(2), 57–90 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Zhenjun Qing
    • 1
  • Bo Li
    • 1
  • Hao Li
    • 1
  • Yingxiang Li
    • 1
  • Shuren Zhang
    • 1
  1. 1.School of Microelectronics and Solid State ElectronicsUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations