Journal of Materials Science: Materials in Electronics

, Volume 25, Issue 9, pp 4156–4162 | Cite as

Three-dimensional (3D) sea-urchin-like hierarchical TiO2 microspheres: growth mechanism and highly enhanced photocatalytic activity

  • Yi Zhou
  • Yutang Wang
  • Qin Yi
  • Mengyao Li
  • Xuzhi Li
  • Pan Deng
  • Yan Huang


Three-dimensional (3D) sea-urchin-like hierarchical TiO2 microspheres were synthesized by a template-free hydrothermal method. The effects of preparation parameters on the microstructure of 3D sea-urchin-like hierarchical TiO2 were investigated using scanning electron microscopy (SEM), transmission electron microscopy, X-ray diffractometer, energy-dispersive X-ray spectrometer and Brunauer–Emmett–Teller technologies. The growth mechanism and photocatalytic activity of 3D sea-urchin-like TiO2 microspheres were discussed. The results of electron microscopy characterizations SEM showed that the microspheres were consisted of numerous one-dimensional (1D) nanorods. A three-step growth model: oxygenated to be 1D nanorods, self-assembly and protonation, was proposed to illustrate the growth mechanism of sea-urchin-like structures. The synthesized 3D sea-urchin-like hierarchical TiO2 microspheres exhibited a better photocatalytic activity for photodegradation of rhodamine B under sunlight irradiation compared to that of P25, which was attributed to the special 3D hierarchical nanostructure, the increased number of surface active sites and anatase crystal structure.


TiO2 Photocatalytic Activity High Photocatalytic Activity TiO2 Powder TiOx 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China (21171027).


  1. 1.
    G. Cernuto, N. Masciocchi, A. Cervellino, G.M. Colonna, A. Guagliardi, J. Am. Chem. Soc. 133, 3114–3119 (2011)CrossRefGoogle Scholar
  2. 2.
    J. Yu, Y. Su, B. Cheng, Adv. Funct. Mater. 17, 1984–1990 (2007)CrossRefGoogle Scholar
  3. 3.
    F. Guzman, S.S.C. Chuang, J. Am. Chem. Soc. 132, 1502–1503 (2010)CrossRefGoogle Scholar
  4. 4.
    H. Choi, A.C. Sofranko, D.D. Dionysiou, Adv. Funct. Mater. 16, 1067–1074 (2006)CrossRefGoogle Scholar
  5. 5.
    G. Liu, H.G. Yang, X. Wang, L. Cheng, J. Pan, G.Q. Lu, H.M. Cheng, J. Am. Chem. Soc. 131, 12868–12869 (2009)CrossRefGoogle Scholar
  6. 6.
    Y.M. Wang, G.J. Du, H. Liu, D. Liu, S.B. Qin, N. Wang, C.G. Hu, X.T. Tao, J. Jiao, J.Y. Wang, Z.L. Wang, Adv. Funct. Mater. 18, 1131–1137 (2008)CrossRefGoogle Scholar
  7. 7.
    Y. Itzhaik, O. Niitsoo, M. Page, G. Hodes, J. Chem. Phys. 113, 4254–4256 (2009)Google Scholar
  8. 8.
    L. Aldon, P. Kubiak, A. Picard, J.-C. Jumas, J. Olivier-Fourcade, Chem. Mat. 18, 1401–1406 (2006)CrossRefGoogle Scholar
  9. 9.
    X.J. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes, Nano Lett. 8, 3781–3786 (2008)CrossRefGoogle Scholar
  10. 10.
    W.T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen, L.M. Peng, J. Am. Chem. Soc. 130, 1124–1125 (2008)CrossRefGoogle Scholar
  11. 11.
    J. Li, H.C. Zeng, J. Am. Chem. 129, 15839–15847 (2007)CrossRefGoogle Scholar
  12. 12.
    J.M. Wu, B. Qi, Phys. Chem. C 111, 666–673 (2007)CrossRefGoogle Scholar
  13. 13.
    Y.J. Cheng, L.J. Zhi, W. Steffen, J.S. Jutmann, Chem. Mater. 20, 6580–6852 (2008)CrossRefGoogle Scholar
  14. 14.
    A. Fujishima, X.T. Zhang, D.A. Tryk, Surf. Sci. Rep. 63, 515–582 (2008)Google Scholar
  15. 15.
    H.U. Lee, K. Ahn, S.Y. Jeong, C.R. Cho, J.P. Kim, J.S. Bae, H.G. Kim, S.H. Kwon, H.W. Lee, Appl. Phys. Lett. 97, 223111 (2010)CrossRefGoogle Scholar
  16. 16.
    G. Liu, C. Sun, H.G. Yang, S.C. Smith, L. Wang, G.Q. Lu, H.M. Cheng, Chem. Commun. 46, 755–757 (2010)CrossRefGoogle Scholar
  17. 17.
    F. Iskandar, A.B.D. Nandiyanto, K.M. Yun, C.J. Hogan, K. Okuyama, P. Biswas, Adv. Mater. 19, 1408–1412 (2007)CrossRefGoogle Scholar
  18. 18.
    K. Lee, D. Kim, P. Roy, I. Paramasivam, B.I. Birajdar, E. Spiecker, P. Schmuki, J. Am. Chem. Soc. 132, 1478–1479 (2010)CrossRefGoogle Scholar
  19. 19.
    D.S. Kim, S.Y. Kwak, Environ. Sci. Technol. 43, 148–151 (2009)CrossRefGoogle Scholar
  20. 20.
    Z. Zhong, Y. Yin, B. Gates, Y. Xia, Adv. Mater. 12, 206 (2000)CrossRefGoogle Scholar
  21. 21.
    F. Caruso, X. Shi, R.A. Caruso, A. Susha, Adv. Mater. 13, 740–744 (2001)CrossRefGoogle Scholar
  22. 22.
    P. Jiang, J.F. Bertone, V.L. Colvin, Science 291, 453–457 (2001)CrossRefGoogle Scholar
  23. 23.
    J.G. Wang, J.M. Yu, X.L. Zhu, X.Z. Kong, Nanoscale Res. Lett. 7, 646 (2012)CrossRefGoogle Scholar
  24. 24.
    W. Shen, Y. Zhu, X. Dong, Chem. Lett. 34, 840 (2005)CrossRefGoogle Scholar
  25. 25.
    L.D. Gao, L.L. Luo, J.F. Chen, L. Shao, Chem. Lett. 34, 138 (2005)CrossRefGoogle Scholar
  26. 26.
    H. Qiao, Y.W. Wang, L.F. Xiao, L.Z. Zhang, Electrochem. Commun. 10, 1280–1283 (2008)CrossRefGoogle Scholar
  27. 27.
    Y.W. Wang, L.Z. Zhang, K.J. Deng, X.Y. Chen, Chem. Phys. 111, 2709–2714 (2007)Google Scholar
  28. 28.
    F. Huang, Z.Y. Fu, A.H. Yan, W.M. Wang, H. Wang, Y.C. Wang, J.Y. Zhang, Y.B. Cheng, Q.J. Zhang, Cryst. Growth Des. 9, 4017–4022 (2009)CrossRefGoogle Scholar
  29. 29.
    Y. Takezawa, H. Imai, J. Cryst. Growth 308, 117–121 (2007)CrossRefGoogle Scholar
  30. 30.
    J.M. Wu, B. Huang, M. Wang, A. Osaka, J. Am. Ceram. Soc. 89, 2660–2663 (2006)CrossRefGoogle Scholar
  31. 31.
    Z.F. Liu, C.C. Liu, J. Ya, E. Lei, Renew. Energ. 36, 1177–1181 (2011)CrossRefGoogle Scholar
  32. 32.
    Y.B. Mao, M. Kanungo, T. Hemraj-Benny, S.S. Wong, Phys. Chem. B 110, 702–710 (2006)Google Scholar
  33. 33.
    D. Gong, C.A. Grimes, O.K. Varghese, W.C. Hu, R.S. Singh, E.C. Dickey, Mater Res. Soc. 16, 3331–3334 (2001)CrossRefGoogle Scholar
  34. 34.
    J.W. Guo, X.J. Cai, Y. Li, R.G. Zhai, S.M. Zhou, P. Na, Chem. Eng. 221, 342–352 (2013)CrossRefGoogle Scholar
  35. 35.
    Y. Zhou, Y. Huang, D. Li, W.H. He, Mater. Res. Bull. 48, 2420 (2013)CrossRefGoogle Scholar
  36. 36.
    Y.D. Yin, C. Erdonmez, S. Aloni, A.P. Alivisatos, J. Am. Chem. Soc. 128, 16744–16746 (2006)Google Scholar
  37. 37.
    T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv. Mater. 11, 1307–1311 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yi Zhou
    • 1
  • Yutang Wang
    • 1
  • Qin Yi
    • 1
  • Mengyao Li
    • 1
  • Xuzhi Li
    • 1
  • Pan Deng
    • 1
  • Yan Huang
    • 1
  1. 1.Department of Chemical and Biological EngineeringChangsha University of Science and TechnologyChangshaChina

Personalised recommendations