Skip to main content
Log in

Three-dimensional (3D) sea-urchin-like hierarchical TiO2 microspheres: growth mechanism and highly enhanced photocatalytic activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) sea-urchin-like hierarchical TiO2 microspheres were synthesized by a template-free hydrothermal method. The effects of preparation parameters on the microstructure of 3D sea-urchin-like hierarchical TiO2 were investigated using scanning electron microscopy (SEM), transmission electron microscopy, X-ray diffractometer, energy-dispersive X-ray spectrometer and Brunauer–Emmett–Teller technologies. The growth mechanism and photocatalytic activity of 3D sea-urchin-like TiO2 microspheres were discussed. The results of electron microscopy characterizations SEM showed that the microspheres were consisted of numerous one-dimensional (1D) nanorods. A three-step growth model: oxygenated to be 1D nanorods, self-assembly and protonation, was proposed to illustrate the growth mechanism of sea-urchin-like structures. The synthesized 3D sea-urchin-like hierarchical TiO2 microspheres exhibited a better photocatalytic activity for photodegradation of rhodamine B under sunlight irradiation compared to that of P25, which was attributed to the special 3D hierarchical nanostructure, the increased number of surface active sites and anatase crystal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Cernuto, N. Masciocchi, A. Cervellino, G.M. Colonna, A. Guagliardi, J. Am. Chem. Soc. 133, 3114–3119 (2011)

    Article  Google Scholar 

  2. J. Yu, Y. Su, B. Cheng, Adv. Funct. Mater. 17, 1984–1990 (2007)

    Article  Google Scholar 

  3. F. Guzman, S.S.C. Chuang, J. Am. Chem. Soc. 132, 1502–1503 (2010)

    Article  Google Scholar 

  4. H. Choi, A.C. Sofranko, D.D. Dionysiou, Adv. Funct. Mater. 16, 1067–1074 (2006)

    Article  Google Scholar 

  5. G. Liu, H.G. Yang, X. Wang, L. Cheng, J. Pan, G.Q. Lu, H.M. Cheng, J. Am. Chem. Soc. 131, 12868–12869 (2009)

    Article  Google Scholar 

  6. Y.M. Wang, G.J. Du, H. Liu, D. Liu, S.B. Qin, N. Wang, C.G. Hu, X.T. Tao, J. Jiao, J.Y. Wang, Z.L. Wang, Adv. Funct. Mater. 18, 1131–1137 (2008)

    Article  Google Scholar 

  7. Y. Itzhaik, O. Niitsoo, M. Page, G. Hodes, J. Chem. Phys. 113, 4254–4256 (2009)

    Google Scholar 

  8. L. Aldon, P. Kubiak, A. Picard, J.-C. Jumas, J. Olivier-Fourcade, Chem. Mat. 18, 1401–1406 (2006)

    Article  Google Scholar 

  9. X.J. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes, Nano Lett. 8, 3781–3786 (2008)

    Article  Google Scholar 

  10. W.T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen, L.M. Peng, J. Am. Chem. Soc. 130, 1124–1125 (2008)

    Article  Google Scholar 

  11. J. Li, H.C. Zeng, J. Am. Chem. 129, 15839–15847 (2007)

    Article  Google Scholar 

  12. J.M. Wu, B. Qi, Phys. Chem. C 111, 666–673 (2007)

    Article  Google Scholar 

  13. Y.J. Cheng, L.J. Zhi, W. Steffen, J.S. Jutmann, Chem. Mater. 20, 6580–6852 (2008)

    Article  Google Scholar 

  14. A. Fujishima, X.T. Zhang, D.A. Tryk, Surf. Sci. Rep. 63, 515–582 (2008)

    Google Scholar 

  15. H.U. Lee, K. Ahn, S.Y. Jeong, C.R. Cho, J.P. Kim, J.S. Bae, H.G. Kim, S.H. Kwon, H.W. Lee, Appl. Phys. Lett. 97, 223111 (2010)

    Article  Google Scholar 

  16. G. Liu, C. Sun, H.G. Yang, S.C. Smith, L. Wang, G.Q. Lu, H.M. Cheng, Chem. Commun. 46, 755–757 (2010)

    Article  Google Scholar 

  17. F. Iskandar, A.B.D. Nandiyanto, K.M. Yun, C.J. Hogan, K. Okuyama, P. Biswas, Adv. Mater. 19, 1408–1412 (2007)

    Article  Google Scholar 

  18. K. Lee, D. Kim, P. Roy, I. Paramasivam, B.I. Birajdar, E. Spiecker, P. Schmuki, J. Am. Chem. Soc. 132, 1478–1479 (2010)

    Article  Google Scholar 

  19. D.S. Kim, S.Y. Kwak, Environ. Sci. Technol. 43, 148–151 (2009)

    Article  Google Scholar 

  20. Z. Zhong, Y. Yin, B. Gates, Y. Xia, Adv. Mater. 12, 206 (2000)

    Article  Google Scholar 

  21. F. Caruso, X. Shi, R.A. Caruso, A. Susha, Adv. Mater. 13, 740–744 (2001)

    Article  Google Scholar 

  22. P. Jiang, J.F. Bertone, V.L. Colvin, Science 291, 453–457 (2001)

    Article  Google Scholar 

  23. J.G. Wang, J.M. Yu, X.L. Zhu, X.Z. Kong, Nanoscale Res. Lett. 7, 646 (2012)

    Article  Google Scholar 

  24. W. Shen, Y. Zhu, X. Dong, Chem. Lett. 34, 840 (2005)

    Article  Google Scholar 

  25. L.D. Gao, L.L. Luo, J.F. Chen, L. Shao, Chem. Lett. 34, 138 (2005)

    Article  Google Scholar 

  26. H. Qiao, Y.W. Wang, L.F. Xiao, L.Z. Zhang, Electrochem. Commun. 10, 1280–1283 (2008)

    Article  Google Scholar 

  27. Y.W. Wang, L.Z. Zhang, K.J. Deng, X.Y. Chen, Chem. Phys. 111, 2709–2714 (2007)

    Google Scholar 

  28. F. Huang, Z.Y. Fu, A.H. Yan, W.M. Wang, H. Wang, Y.C. Wang, J.Y. Zhang, Y.B. Cheng, Q.J. Zhang, Cryst. Growth Des. 9, 4017–4022 (2009)

    Article  Google Scholar 

  29. Y. Takezawa, H. Imai, J. Cryst. Growth 308, 117–121 (2007)

    Article  Google Scholar 

  30. J.M. Wu, B. Huang, M. Wang, A. Osaka, J. Am. Ceram. Soc. 89, 2660–2663 (2006)

    Article  Google Scholar 

  31. Z.F. Liu, C.C. Liu, J. Ya, E. Lei, Renew. Energ. 36, 1177–1181 (2011)

    Article  Google Scholar 

  32. Y.B. Mao, M. Kanungo, T. Hemraj-Benny, S.S. Wong, Phys. Chem. B 110, 702–710 (2006)

    Google Scholar 

  33. D. Gong, C.A. Grimes, O.K. Varghese, W.C. Hu, R.S. Singh, E.C. Dickey, Mater Res. Soc. 16, 3331–3334 (2001)

    Article  Google Scholar 

  34. J.W. Guo, X.J. Cai, Y. Li, R.G. Zhai, S.M. Zhou, P. Na, Chem. Eng. 221, 342–352 (2013)

    Article  Google Scholar 

  35. Y. Zhou, Y. Huang, D. Li, W.H. He, Mater. Res. Bull. 48, 2420 (2013)

    Article  Google Scholar 

  36. Y.D. Yin, C. Erdonmez, S. Aloni, A.P. Alivisatos, J. Am. Chem. Soc. 128, 16744–16746 (2006)

    Google Scholar 

  37. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv. Mater. 11, 1307–1311 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21171027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Wang, Y., Yi, Q. et al. Three-dimensional (3D) sea-urchin-like hierarchical TiO2 microspheres: growth mechanism and highly enhanced photocatalytic activity. J Mater Sci: Mater Electron 25, 4156–4162 (2014). https://doi.org/10.1007/s10854-014-2143-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2143-4

Keywords

Navigation