Journal of Materials Science: Materials in Electronics

, Volume 25, Issue 9, pp 4150–4155 | Cite as

Electrical properties of electrodeposited zinc selenide (ZnSe) nanowires

  • Sandeep Arya
  • Saleem Khan
  • Parveen Lehana
  • Ishan Gupta
  • Suresh Kumar


In this work, zinc selenide (ZnSe) nanowires were fabricated on indium-tin oxide coated glass substrate via template-assisted electrodeposition method from an electrolytic solution of zinc (II) sulphate (ZnSO4·7H2O) and selenium dioxide (SeO2). ZnSe nanowires of diameter 100 nm have been fabricated using polycarbonate track-etch membrane. Electrodeposition was done at 30 °C temperature and the length of the nanowires was controlled by adjusting the deposition time. Both morphological and electrical characteristics were studied. Sample characterization was done using scanning electron microscope and X-ray diffraction. IV measurements reveal that the ZnSe nanowires have non-linear behavior like Schottky diode characteristics. Further, the ZnSe nanowires were used in astable multivibrator which acts as capacitor to give conventional output behavior. The temperature dependent capacitive properties of ZnSe nanowires reveal that ZnSe nanowire can be used as temperature sensor.


ZnSe Schottky Diode Zinc Selenide Digital Storage Oscilloscope Copper Tape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Kumar, A. Vohra, S.K. Chakarvarti, Nanomater. Nanotechnol. 2, 1 (2012)CrossRefGoogle Scholar
  2. 2.
    H.W. Liang, S. Liu, S.H. Yu, Adv. Mater. 22, 3925 (2010)CrossRefGoogle Scholar
  3. 3.
    J.B. Baxter, E.S. Aydil, Appl. Phys. Lett. 86, 053114 (2005)CrossRefGoogle Scholar
  4. 4.
    J.D. Merchant, M.J. Cocievera, J. Electrochem. Soc. 143, 4054 (1996)CrossRefGoogle Scholar
  5. 5.
    Y.G. Wang, B.S. Zou, T.H. Wang, N. Wang, Y. Cai, Y.F. Chan, S.X. Zhou, Nanotechnology 17, 2420 (2006)CrossRefGoogle Scholar
  6. 6.
    S. Choopun, H. Tabata, T.J. Kawai, Cryst. Growth 274, 167 (2005)CrossRefGoogle Scholar
  7. 7.
    K.V. Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494 (1980)CrossRefGoogle Scholar
  8. 8.
    L. Hu, G. Chen, Nano Lett. 7, 3249 (2007)CrossRefGoogle Scholar
  9. 9.
    K.K. Misra, K.J. Rajeshwar, Electroanal. Chem. 273, 169 (1989)CrossRefGoogle Scholar
  10. 10.
    S.P. Neumann, C. Konigstein, Thin Solid Films 265, 33 (1995)CrossRefGoogle Scholar
  11. 11.
    S. Kumar, A. Vohra, S.K. Chakarvarti, J. Mater. Sci. Mater. Electron. 23, 1485 (2012)Google Scholar
  12. 12.
    Y. Ahu, Y. Bando, Chem. Phys. Lett. 377, 361 (2003)Google Scholar
  13. 13.
    S.B. Mirov, V.V. Fedorov, K. Grahaw, I.S. Moskalev, V.V. Badikov, V. Panyutin, Optoelectron. Lett. 27, 909 (2003)Google Scholar
  14. 14.
    C. Lee, S. Park, J.J. Jun, Korean Phys. Soc. 55, 554 (2009)CrossRefGoogle Scholar
  15. 15.
    J. Basu, R. Divakar, J. Nowak, S. Hofmann, A. Colli, A. Franciosi, C.B. Carter, J. Appl. Phys. 104, 064302 (2008)CrossRefGoogle Scholar
  16. 16.
    X.T. Zhang, Z. Liu, Y.P. Leung, Q. Li, S.K. Hark, Appl. Phys. Lett. 83, 5533 (2003)CrossRefGoogle Scholar
  17. 17.
    S. Liu, W. Zhang, Z. Hu, Z. Feng, X. Sheng, Y. Liang, J. Mater. Sci. Mater. Electron. 24, 4253 (2013)Google Scholar
  18. 18.
    C. Ye, X. Fang, Y. Wang, P. Yan, J. Zhao, L. Zhang, Appl. Phys. A 79, 113 (2004)CrossRefGoogle Scholar
  19. 19.
    L. Wang, M. Lu, X. Wang, Y. Yu, X. Zhao, P. Lv, H. Song, X. Zhang, L. Luo, C. Wu, Y. Zhang, J. Jie, J. Mater. Chem. A 1, 1148 (2013)CrossRefGoogle Scholar
  20. 20.
    A. Colli, A. Fasoli, S. Pisana, Y. Fu, P. Beecher, W.I. Milne, A.C. Ferrari, Nano Lett. 8, 1358 (2008)CrossRefGoogle Scholar
  21. 21.
    S.Y. Bae, H.W. Seo, J.H. Park, J. Phys. Chem. B 108, 5206 (2004)Google Scholar
  22. 22.
    S. Choopun, H. Tabata, T. Kawai, J. Cryst. Growth 274, 167 (2005)CrossRefGoogle Scholar
  23. 23.
    C.R. Martin, Chem. Mater. 8, 1739 (1996)CrossRefGoogle Scholar
  24. 24.
    M.M. González, G.J. Snyder, A.L. Prieto, Nano Lett. 3, 973 (2003)CrossRefGoogle Scholar
  25. 25.
    D. Xu, D. Chen, Y. Xu, X. Shi, G. Guo, L. Gui, Y. Tang, Pure Appl. Chem. 72, 127 (2000)Google Scholar
  26. 26.
    C.R. Martin, Science 266, 1961 (1994)CrossRefGoogle Scholar
  27. 27.
    S. Kumar, V. Kundu, A. Vohra, S.K. Chakarvarti, J. Mater. Sci. Mater. Electron. 22, 995 (2011)Google Scholar
  28. 28.
    S. Kumar, A. Vohra, S.K. Chakarvarti, J. Mater. Sci. Mater. Electron. 23, 1793 (2012)Google Scholar
  29. 29.
    S. Arya, S. Khan, S. Kumar, R. Verma, P. Lehana, Bull. Mater. Sci. 36, 535 (2013)CrossRefGoogle Scholar
  30. 30.
    ATM Data File Nos. 80-0021, 32-0458Google Scholar
  31. 31.
    T. Yu, W. Yan-Guo, Chin. Phys. Lett. 30, 117901 (2013)CrossRefGoogle Scholar
  32. 32.
    P. Chattopadhyay, S. Sanyal, Appl. Surf. Sci. 89, 205 (1995)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sandeep Arya
    • 1
  • Saleem Khan
    • 1
  • Parveen Lehana
    • 1
  • Ishan Gupta
    • 2
  • Suresh Kumar
    • 3
  1. 1.Department of Physics and ElectronicsUniversity of JammuJammuIndia
  2. 2.Department of EEEArni UniversityKathgarhIndia
  3. 3.Department of Electronic ScienceKurukshetra UniversityKurukshetraIndia

Personalised recommendations