Journal of Materials Science: Materials in Electronics

, Volume 25, Issue 9, pp 3962–3966 | Cite as

Effects of cobalt and sintering temperature on electrical properties of Ba0.98Ca0.02Zr0.02Ti0.98O3 lead-free ceramics

  • Huajun Sun
  • Yong Zhang
  • Xiaofang Liu
  • Yi Liu
  • Shanshan Guo
  • Wen Chen


Lead-free (Ba0.98Ca0.02)(Zr0.02Ti0.98)O3-xmol% (x = 0–1.6) cobalt ceramics (BCZT-xCo) have been fabricated by the traditional solid-state reaction technique and the effects of Co and sintering temperature on ferroelectric, dielectric and piezoelectric properties of (Ba0.98Ca0.02)(Zr0.02Ti0.98)O3 lead-free ceramics have been studied systematically. The orthorhombic–tetragonal (T O–T) transition shift towards lower temperature with increasing Co addition, while Curie temperature (T c) remained at relatively high value of 107 °C. And the Main piezoelectric parameters are optimized at x = 0.8 mol% with a high piezoelectric coefficient (d 33 = 330 pC/N), a planar mode electromechanical coupling factor (k p = 46.7 %), a high dielectric constant (ε r = 2,675) and a low dielectric loss (tanδ = 0.90 %) at 1kHZ. Besides these, high remnant polarization (P r) and low coercive field (E c) of 11.5 μC/cm2, 0.31 kV/cm are also obtained at (Ba0.98Ca0.02)(Zr0.02Ti0.98)O3-0.8 mol%Co lead-free ceramics. Furthermore, greatly enhanced temperature stability of the piezoelectric properties was obtained in the temperature range from 20 to 90 °C. The above results indicate that BCZT-Co ceramics are promising lead-free materials for practical applications.


Piezoelectric Property Ferroelectric Property Piezoelectric Coefficient Acceptor Doping Mechanical Quality Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Supported by the National Natural Science Foundation of China (Grant Nos. 50802066, 51072145, 51272191 and 51372181), Fundamental Research Funds for the Central Universities and Self-determined and Innovative Research Funds of WUT (Grant No. 2013-IV-034).


  1. 1.
    R. Guo, L.E. Cross, S.-E. Park, B. Noheda, D.E. Cox, G. Shirane, Phys. Rev. Lett. 84, 5423 (2000)CrossRefGoogle Scholar
  2. 2.
    H.L. Du, S.B. Qu, J. Che, Z.Y. Liu, X.Y. Wei, Z.B. Pei, Mater. Sci. Eng. A 393, 36 (2005)CrossRefGoogle Scholar
  3. 3.
    R. Zhang, Z.P. Yang, X.L. Chao, C. Kang, Ceram. Int. 35, 199 (2009)CrossRefGoogle Scholar
  4. 4.
    H.L. Du, Z.B. Pei, W.C. Zhou, F. Luo, S.B. Qu, Mater. Sci. Eng. A 421, 286 (2006)CrossRefGoogle Scholar
  5. 5.
    X.Y. Huang, C.H. Gao, Z.W. Zhu, L. Pan, Z.G. Chen, 2012 Symposium on Piezoelectricity, Acoustic Waves and Device Applications, pp. 9–12Google Scholar
  6. 6.
    S.W. Zhang, H.L. Zhang, B.P. Zhang, G.L. Zhao, J. Eur. Ceram. Soc. 29, 3235 (2009)CrossRefGoogle Scholar
  7. 7.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)CrossRefGoogle Scholar
  8. 8.
    G.Z. Zang, J.F. Wang, H.C. Chen, W.B. Su, C.M. Wang et al., Appl. Phys. Lett. 88, 212908 (2006)CrossRefGoogle Scholar
  9. 9.
    R.Z. Zuo, X.S. Fang, C. Ye, Appl. Phys. Lett. 90, 092904 (2007)CrossRefGoogle Scholar
  10. 10.
    R.Z. Zuo, J. Fu, D.Y. Lv, J. Am. Ceram. Soc. 92, 283 (2009)CrossRefGoogle Scholar
  11. 11.
    Y.R. Zhang, J.F. Li, B.P. Zhang, C.E. Peng, J. Appl. Phys. 103, 074109 (2008)CrossRefGoogle Scholar
  12. 12.
    W.F. Liu, X.B. Ren, Phys. Rev. Lett. 103, 257602 (2009)CrossRefGoogle Scholar
  13. 13.
    W. Li, Z.J. Xu, R.Q. Chu, P. Fu, G.Z. Zang, Mater. Sci. Eng., B 176, 65 (2011)CrossRefGoogle Scholar
  14. 14.
    S.W. Zhang, H.L. Zhang, B.P. Zhang, S. Yang, J. Alloys Compd. 506, 131 (2010)CrossRefGoogle Scholar
  15. 15.
    W. Li, Z.J. Xu, R.Q. Chu, P. Fu, G.Z. Zang, J. Am. Ceram. Soc. 93, 2492 (2010)Google Scholar
  16. 16.
    W. Li, Z.J. Xu, R.Q. Chu, P. Fu, G.Z. Zang, Mater. Lett. 64, 2325 (2010)CrossRefGoogle Scholar
  17. 17.
    J.G. Hao, W.F. Bai, W. Li, J.W. Zhai, J. Am. Ceram. Soc. 95, 1998 (2012)CrossRefGoogle Scholar
  18. 18.
    W. Li, Z.J. Xu, R.Q. Chu, P. Fu, G.Z. Zang, Phys. B 405, 4513 (2010)CrossRefGoogle Scholar
  19. 19.
    M.P. Zheng, Y.D. Hou, F.Y. Xie, J. Chen, M.K. Zhu, H. Yan, Acta Mater. 61, 1489 (2013)CrossRefGoogle Scholar
  20. 20.
    P.Z. Zhang, M.R. Shen, L. Fang, F.G. Zheng, X.L. Wu, J.C. Shen, H.T. Chen, Appl. Phys. Lett. 92, 222908 (2008)CrossRefGoogle Scholar
  21. 21.
    S.J. Zhang, R. Xia, T.R. Shrout, G.Z. Zang, J.F. Wang, Appl. Phys. Lett. 91, 32913 (2007)Google Scholar
  22. 22.
    Y. Tsur, T.D. Dunbar, C.A. Randall, J. Electroceram. 7, 25 (2001)CrossRefGoogle Scholar
  23. 23.
    S.J. Zhang, R. Xia, T.R. Shrout, J. Appl. Phys. 100, 104108 (2006)CrossRefGoogle Scholar
  24. 24.
    L. Wu, D.Q. Xiao, J.G. Wu, Y. Sun, D.M. Lin et al., J. Eur. Ceram. Soc. 28, 2963 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Huajun Sun
    • 1
  • Yong Zhang
    • 1
  • Xiaofang Liu
    • 2
  • Yi Liu
    • 1
  • Shanshan Guo
    • 1
  • Wen Chen
    • 1
  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and EngineeringWuhan University of TechnologyWuhanPeople’s Republic of China
  2. 2.School of Chemical EngineeringWuhan University of TechnologyWuhanPeople’s Republic of China

Personalised recommendations