Journal of Materials Science: Materials in Electronics

, Volume 25, Issue 9, pp 3771–3778 | Cite as

Magnetoelectric and magnetodielectric effect in BST–LSMO ferromagnetic/ferroelectric composites

  • M. M. Sutar
  • S. R. Jigajeni
  • A. N. Tarale
  • S. B. Kulkarni
  • P. B. Joshi


Ba1−xSrxTiO3 (BST) for x = 0.20, 0.25 and 0.30 and La0.67Sr0.33MnO3 (LSMO) are synthesized using hydroxide co-precipitation route to lead to nanocrystalline particles of BST and LSMO respectively. Further the magnetoelectric (ME) and magnetodielectric (MD) composites of BST0.20, BST0.25 and BST0.30 are formed by addition of the LSMO at y = 0.1 and y = 0.2. The parent BST compositions are studied for its dielectric properties as a function of temperature and frequency up to 1 MHz. The AC conductivity of LSMO–BST (LBST) is studied and it confirms the conduction to be due to small polarons. The paper also presents ME and MD properties of LBST composites. The observation on MD properties show that the dielectric constant possesses contribution due to magnetic field dependant interfacial polarization and variation due to the stress induced because of the applied magnetic field. Further from the ME study, the maximum value of magnetoelectric coefficient is 15.51 mV/Oe/cm is observed for LBST composites.


Applied Magnetic Field Interfacial Polarization Small Polaron Magnetoelectric Coefficient Titanium Oxalate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank Dr.V.R. Reddy, UGC-DAE-CSR Indore for his kind help during the course of this work also author M.M. Sutar likes to thanks the University Grant Commission, New Delhi, India, for a Teacher Research Fellowship award under FIP, XIth Plan 2007-12.


  1. 1.
    M.A. McCormick, R.K. Roeder, E.B. Slamovich, J. Mater. Res. 16(4), 1200–1209 (2001)CrossRefGoogle Scholar
  2. 2.
    A. Iansculescu, D. Berger, L. Mitoseriu, L.P. Curecheriu, N. Dragan, D. Crisan, E. Vasile, Ferroelectrics 369(1), 22–34 (2008)CrossRefGoogle Scholar
  3. 3.
    F. Zimmerman, M. Voiats, W. Menesklou, E. Ivezs-Tiffee, J. Euro. Ceram. Soci 24, 1729–1733 (2004)CrossRefGoogle Scholar
  4. 4.
    T. Chien, X. Xu, J.H. Kim, J. Sachleben, J.S. Speck, F.F. Lange, J. Mater. Res. 14, 3330 (1999)CrossRefGoogle Scholar
  5. 5.
    J.H. Haeni, P. Irvin, W. Chang, R. Ucker et al., Nature 140, 758–760 (2004)CrossRefGoogle Scholar
  6. 6.
    A.K. Tagantsev, V.O. Sherman, K.F. Astafiev, J. Venkatesh, N. Setter, J. Electroceramics 11, 5–66 (2003)CrossRefGoogle Scholar
  7. 7.
    V.B. Shirokov, V.I. Torgashev, A.A. Bakirov, V.V. Lemnov, Phys. Rev. B 73, 104116 (2006)CrossRefGoogle Scholar
  8. 8.
    M. Jain, S.B. Mujumdar, R.S. Katiyar, A.S. Bhalla, Mater. Lett. 57, 4232–4236 (2003)CrossRefGoogle Scholar
  9. 9.
    G. Catalan, Phys. Lett. 88, 102902 (2006)Google Scholar
  10. 10.
    S.A. Gridnev, A.V. Kalgin, V.A. Chernykh, Integr. Ferroelectr. 109, 70–75 (2009)CrossRefGoogle Scholar
  11. 11.
    S. Zhang, X. Dong, Y. Chen, G. Wang, J. Zhu, X. Tang, Solid State Commun. 151, 982–984 (2011)CrossRefGoogle Scholar
  12. 12.
    H. Fujishiro, M. Ikebe, Y. Konno, T. Fukase, J. Phys. Soc. Jpn. 66, 3703–3705 (1997)CrossRefGoogle Scholar
  13. 13.
    H. Fujishiro, T. Fukase, M. Ikebe, J. Phys. Soc. Jpn. 67, 2582–2585 (1998)CrossRefGoogle Scholar
  14. 14.
    S.K. Lee, T.J. Park, G.J. Choi, K.K. Koo, S.W. Kim, Chem. Phys. 82, 742–749 (2003)Google Scholar
  15. 15.
    G. Xu, W. Weng, J. Yao, P. Du, G. Han, Microelectron. Eng. 66, 568–573 (2003)CrossRefGoogle Scholar
  16. 16.
    S.S. Veer, D.J. Salunkhe, S.V. Kulkarni, S.B. Kulkarni, P.B. Joshi, Indian J. Eng. Mater. Sci. 15, 121–125 (2008)Google Scholar
  17. 17.
    D.J. Salunkhe, S.S. Veer, S.V. Kulkarni, S.B. Kulkarni, P.B. Joshi, J. Instrum. Soc. India 38(4), 294–298 (2008)Google Scholar
  18. 18.
    K.K. Patankar, S.S. Joshi, B.K. Chougule, Phys. Lett. A 346, 337–341 (2005)CrossRefGoogle Scholar
  19. 19.
    D. Alder, J. Feinleib, Phys. Rev. B2, 3112 (1970)Google Scholar
  20. 20.
    S.L. Kadam, K.K. Patanakar, V.L. Mathe, M.B. Kothale, R.B. Kale, B.K. Chougule, Mater. Chem. Phys. 78, 684–690 (2003)Google Scholar
  21. 21.
    O. Bidaut, P. Goux, M.K. Chikech, M. Belkaoumi, M. Manglion, Phys. Rev. B. 49, 7868–7873 (1994)CrossRefGoogle Scholar
  22. 22.
    S.K. Choi, B.S. Kang, Y.W. Cho, Y.M. Vysochanskii, J. Electroceramics 13, 493–502 (2004)CrossRefGoogle Scholar
  23. 23.
    S.R. Jigajeni, M.M. Sutar, S.M. Salunkhe, P.B. Joshi, J. Mater. Sci.: Mater. Electron. 23, 1678–1687 (2012)Google Scholar
  24. 24.
    A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura, Phys. Rev. B. 51, 103–109 (1995)CrossRefGoogle Scholar
  25. 25.
    Y.K. Tang, Y. Sui, D.P. Xu, Z.N. Qian, W.H. Su, J. Magn. Magn. Mater. 299, 260–264 (2006)CrossRefGoogle Scholar
  26. 26.
    S.M. Pilgrim, R.E. Newnham, Mater. Res. Bull. 21(12), 1447–1454 (1986)CrossRefGoogle Scholar
  27. 27.
    S.R. Jigajeni, S.V. Kulkarni, Y.D. Kolekar, S.B. Kulkarni, P.B. Joshi, J. Alloy. Compd. 492, 402–405 (2010)CrossRefGoogle Scholar
  28. 28.
    G. Shrinivasan, E.T. Rasmussen, J. Gallegal, R. Shrinivasan, Phys. Rev. B 64, 14408 (2001)CrossRefGoogle Scholar
  29. 29.
    K.K. Patankar, V.L. Mathe, A.N. Patil, S.A. Patil, S.D. Lotke, Y.D. Kolekar, P.B. Joshi, J. Electroceramics 6, 115–122 (2001)CrossRefGoogle Scholar
  30. 30.
    C.M. Kanamadi, B.K. Chougule, J. Electroceramics 15, 123–128 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • M. M. Sutar
    • 1
  • S. R. Jigajeni
    • 2
  • A. N. Tarale
    • 1
  • S. B. Kulkarni
    • 3
  • P. B. Joshi
    • 1
  1. 1.School of Physical SciencesSolapur UniversitySolapurIndia
  2. 2.Walchand Institute of TechnologySolapurIndia
  3. 3.Institute of ScienceMumbaiIndia

Personalised recommendations