Journal of Materials Science: Materials in Electronics

, Volume 25, Issue 9, pp 3753–3761 | Cite as

Structure, ferroelectric and piezoelectric properties of Bi0.5(Na0.8K0.2)0.5TiO3 modified BiFeO3–BaTiO3 lead-free piezoelectric ceramics

  • Yongquan Guo
  • Ping Xiao
  • Lingling Luo
  • Na Jiang
  • Fengying Lei
  • Qiaoji Zheng
  • Dunmin Lin


A new lead-free solid solution of (0.75 − x)BiFeO3–0.25BaTiO3xBi0.5(Na0.8K0.2)0.5TiO3 + 1 mol% MnO2 has been prepared by a conventional ceramic technique and the effects of Bi0.5(Na0.8K0.2)0.5TiO3 and sintering temperature on the structure, ferroelectric and piezoelectric properties of the material have been studied. The ceramics sintered at 960 °C for 2 h possess a pure perovskite structure and no second phases can be detected. After the addition of Bi0.5(Na0.8K0.2)0.5TiO3, a morphotropic phase boundary of rhombohedral and orthorhombic phases is formed at x = 0.01. The addition of a small amount of Bi0.5(Na0.8K0.2)0.5TiO3 can promote the grain growth, while excess Bi0.5(Na0.8K0.2)0.5TiO3 causes an inhibition of grain growth. Sintering temperature has an important influence on the structure and electrical properties of the ceramics. The sintering temperature of 960 °C is a critical temperature to obtain the ceramics with good piezoelectric properties. For the ceramic with x = 0.01 sintered at/above 960 °C located at the morphotropic phase boundary, large grains, good densification, high resistivity and enhanced electrical properties are obtained.


MnO2 BaTiO3 Sinter Temperature BiFeO3 Piezoelectric Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the projects of Education Department of Sichuan Province (11ZA104), Science and Technology Bureau of Sichuan Province (2010JQ0046) and the Open Project of State Key Laboratory of Electronic Thin Films and Integrated Devices of University of Electronic Science and Technology of China (KFJJ201108).


  1. 1.
    B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic, London, 1971)Google Scholar
  2. 2.
    F. Gao, R. Hong, J. Liu, Z. Li, L. Cheng, C. Tian, J. Alloys Compd. 475, 619 (2009)CrossRefGoogle Scholar
  3. 3.
    F. Gao, R. Hong, J. Liu, J. Am. Ceram. Soc. 29, 1687 (2009)Google Scholar
  4. 4.
    J.M. Moreau, C. Michel, R. Gerson, W.J. James, J. Phys. Chem. Solids 32, 1315 (1971)Google Scholar
  5. 5.
    G.A. Smolenskii, I.E. Chupis, Sov. Phys. Usp. 25, 475 (1982)CrossRefGoogle Scholar
  6. 6.
    S.K. Pradhan, B.K. Roul, Phys. B 406, 3313 (2011)CrossRefGoogle Scholar
  7. 7.
    G. Catalan, J.F. Scott, Adv. Mater. 21, 2463 (2008)CrossRefGoogle Scholar
  8. 8.
    Q. Zhang, X.H. Zhu, Y.H. Xu, H.B. Gao, Y.J. Xiao, D.Y. Liang, J.L. Zhu, J.G. Zhu, D.Q. Xiao, J. Alloys Compd. 546, 57 (2013)CrossRefGoogle Scholar
  9. 9.
    S. Pattanayak, R.N.P. Choudhary, S.R. Shannigrahi, P.R. Das, R. Padhee, J. Magn. Magn. Mater. 341, 158 (2013)CrossRefGoogle Scholar
  10. 10.
    X.M. Chen, J.L. Wang, G.L. Yuan, D. Wu, J.M. Liu, J. Yin, Z.G. Liu, J. Alloys Compd. 541, 173 (2012)CrossRefGoogle Scholar
  11. 11.
    W. Dong, Y.P. Guo, B. Guo, H.Y. Liu, H. Li, H.Z. Liu, Mater. Lett. 91, 359 (2013)CrossRefGoogle Scholar
  12. 12.
    F. Roulland, C. Lefevre, A. Thomasson, N. Viart, J. Eur. Ceram. Soc. 33, 1029 (2013)Google Scholar
  13. 13.
    X.J. Xi, S.Y. Wang, W.F. Liu, H.J. Wang, F. Guo, X. Wang, J. Gao, D.J. Li, J. Magn. Magn. Mater. 355, 259 (2014)CrossRefGoogle Scholar
  14. 14.
    H.L. Zhang, W. Jo, K. Wang, K.G. Webber, Ceram. Int. 40, 4759 (2014)CrossRefGoogle Scholar
  15. 15.
    C.Y. Shi, X.Z. Liu, Y.M. Hao, Z.B. Hu, Solid State Sci. 13, 1885 (2011)CrossRefGoogle Scholar
  16. 16.
    T.H. Wang, C.S. Tu, Y. Ding, T.C. Lin, C.S. Ku, W.C. Yang, H.H. Yu, K.T. Wu, Y.D. Yao, H.Y. Lee, Curr. Appl. Phys. 11, S240 (2011)CrossRefGoogle Scholar
  17. 17.
    Y.X. Wei, X.T. Wang, J.T. Zhu, X.L. Wang, J.J. Jia, J. Am. Ceram. Soc. 96, 1 (2013)CrossRefGoogle Scholar
  18. 18.
    S. Chandarak, J. Jutimoosik, A. Bootchanont, M. Unruan, P. Jantaratana, S. Priya, S. Srilomsak, S. Rujirawat, R. Yimnirun, J. Supercond. Novel Magn. 26, 455 (2013)CrossRefGoogle Scholar
  19. 19.
    Q.Q. Wang, Z. Wang, X.Q. Liu, X.M. Chen, J. Am. Ceram. Soc. 95, 670 (2012)CrossRefGoogle Scholar
  20. 20.
    Z.Z. Ma, Z.M. Tian, J.Q. Li, C.H. Wang, S.X. Huo, H.N. Duan, S.L. Yuan, Solid State Sci. 13, 2196 (2011)CrossRefGoogle Scholar
  21. 21.
    H.Y. Liu, Y.P. Guo, B. Guo, W. Dong, D. Zhang, J. Eur. Ceram. Soc. 32, 4335 (2012)CrossRefGoogle Scholar
  22. 22.
    S.X. Huo, S.L. Yuan, Y. Qiu, Z.Z. Ma, C.H. Wang, Mater. Lett. 68, 8 (2012)CrossRefGoogle Scholar
  23. 23.
    Y.J. Lee, J.S. Kim, S.H. Han, H.W. Kang, H.G. Lee, J. Kor, Phys. Soc. 61, 947 (2012)Google Scholar
  24. 24.
    S.O. Leontsev, R.E. Eitel, J. Am. Ceram. Soc. 92, 2957 (2009)CrossRefGoogle Scholar
  25. 25.
    W. Zhao, H.P. Zhou, Y.K. Yan, Mater. Lett. 62, 1219 (2008)CrossRefGoogle Scholar
  26. 26.
    X.P. Jiang, L.Z. Li, M. Zeng, H.L.W. Chan, Mater. Lett. 60, 1786 (2006)CrossRefGoogle Scholar
  27. 27.
    S.B. Lee, T.S. Key, Z. Liang, R.E. Garcia, S. Wang, X. Tricoche, G.S. Rohrer, Y. Saito, C. Ito, T. Tani, J. Eur. Ceram. Soc. 33, 313 (2013)CrossRefGoogle Scholar
  28. 28.
    M. Izumi, K. Yamamoto, M. Suzuki, Y. Noguchi, M. Miyayama, Appl. Phys. Lett. 93, 242903 (2008)CrossRefGoogle Scholar
  29. 29.
    J. Pharatree, W. Anucha, J. Sukanda, J. Appl. Phys. 114, 027005 (2013)CrossRefGoogle Scholar
  30. 30.
    S.T. Zhang, B. Yang, W.W. Cao, Acta Mater. 60, 469 (2012)CrossRefGoogle Scholar
  31. 31.
    Y. Hiruma, R. Aoyagi, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys., Part 1 44, 5040 (2005)Google Scholar
  32. 32.
    M.I. Mendelson, J. Am. Ceram. Soc. 52, 443 (1968)CrossRefGoogle Scholar
  33. 33.
    L. Lutterotti, MAUD, CPD NEWSLETTER, (IUCr) No. 24, Dec 2000Google Scholar
  34. 34.
    G. Arlt, N.A. Pertsev, J. Appl. Phys. 70, 2283 (1991)CrossRefGoogle Scholar
  35. 35.
    Q.M. Zhang, H. Wang, N. Kim, L.E. Cross, J. Appl. Phys. 75, 454 (1994)CrossRefGoogle Scholar
  36. 36.
    T.M. Kamel, G. de With, J. Eur. Ceram. Soc. 28, 851 (2008)CrossRefGoogle Scholar
  37. 37.
    C.A. Randall, N. Kim, J.P. Kucera, W. Cao, T.R. Shrout, J. Am. Ceram. Soc. 81, 677 (1998)CrossRefGoogle Scholar
  38. 38.
    M. Mahesh Kumar, V.R. Palkar, K. Srinvivas, Appl. Phys. Lett. 76, 2764 (2000)CrossRefGoogle Scholar
  39. 39.
    Y. Chishima, Y. Noguchi, Y. Kitanaka, M. Miyayama, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 2233 (2010)CrossRefGoogle Scholar
  40. 40.
    T. Kawae, Y. Terauchi, H. Tsuda, M. Kumeda, A. Morimoto, Appl. Phys. Lett. 94, 112904 (2009)CrossRefGoogle Scholar
  41. 41.
    H.B. Yang, C.R. Zhou, X.Y. Liu, Q. Zhou, G.H. Chen, H. Wang, W.Z. Li, Mater. Res. Bull. 47, 4233 (2012)CrossRefGoogle Scholar
  42. 42.
    J.G. Hao, W.F. Bai, W. Li, J.W. Zhai, J. Am. Ceram. Soc. 95, 1998 (2012)CrossRefGoogle Scholar
  43. 43.
    S.X. Huo, S.L. Yuan, Z.M. Tian, C.H. Wang, Y. Qiu, J. Am. Ceram. Soc. 95, 1383 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yongquan Guo
    • 1
  • Ping Xiao
    • 1
  • Lingling Luo
    • 1
  • Na Jiang
    • 1
  • Fengying Lei
    • 1
  • Qiaoji Zheng
    • 1
  • Dunmin Lin
    • 1
  1. 1.College of Chemistry and Materials ScienceSichuan Normal UniversityChengduChina

Personalised recommendations