Indium rich InGaN solar cells grown by MOCVD

  • H. Çakmak
  • Engin Arslan
  • M. Rudziński
  • P. Demirel
  • H. E. Unalan
  • W. Strupiński
  • R. Turan
  • M. Öztürk
  • E. Özbay


This study focuses on both epitaxial growths of InxGa1−xN epilayers with graded In content, and the performance of solar cells structures grown on sapphire substrate by using metal organic chemical vapor deposition. The high resolution X-ray and Hall Effect characterization were carried out after epitaxial InGaN solar cell structures growth. The In content of the graded InGaN layer was calculated from the X-ray reciprocal space mapping measurements. Indium contents of the graded InGaN epilayers change from 8.8 to 7.1 % in Sample A, 15.7–7.1 % in Sample B, and 26.6–15.1 % in Sample C. The current voltage measurements of the solar cell devices were carried out after a standard micro fabrication procedure. Sample B exhibits better performance with a short-circuit current density of 6 mA/cm2, open-circuit voltage of 0.25 V, fill factor of 39.13 %, and the best efficiency measured under a standard solar simulator with one-sun air mass 1.5 global light sources (100 mW/cm2) at room temperature for finished devices was 0.66 %.


Solar Cell Metal Organic Chemical Vapor Deposition Solar Cell Device Solar Cell Structure Current Voltage Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the projects DPT-HAMIT, DPT-FOTON, NATO-SET-193 and TUBITAK under Project Nos. 113E331, 109A015 and 109E301. One of the authors (E.O.) also acknowledges partial support from the Turkish Academy of Sciences.


  1. 1.
    M.I. Hoffert, K. Caldeira, A.K. Jain, E.F. Haites, L.D. Harvey, S.D. Potter, M.E. Schlesinger, T.M.L. Wigley, D.J. Wuebbles, Nature 881, 395 (1998)Google Scholar
  2. 2.
    S. Nakamura, G. Fasol, The Blue Laser Diode (Springer, Berlin, 1997)CrossRefGoogle Scholar
  3. 3.
    O. Jani, I. Ferguson, C. Honsberg, S. Kurtz, Appl. Phys. Lett. 91, 132117 (2007)CrossRefGoogle Scholar
  4. 4.
    W. Guter, J. Schöne, S.P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A.W. Bett, F. Dimroth, Appl. Phys. Lett. 94, 223504 (2009)CrossRefGoogle Scholar
  5. 5.
    W. Junqiao, J. Appl. Phys. 106, 011101 (2009)CrossRefGoogle Scholar
  6. 6.
    O. Jani, Development of Wide-Band Gap InGaN Solar Cells for High-Efficiency Photovoltaics (Georgia Institute of Technology, Georgia, 2008)Google Scholar
  7. 7.
    Y. Huang, B. Jampana, M. Jamil, J.-H. Ryou, R.D. Dupuis, I.T. Ferguson, J. Photon. Energy 2, 028501-1 (2012)Google Scholar
  8. 8.
    H. Wang, D.S. Jiang, U. Jahn, J.J. Zhu, D.G. Zhao, Z.S. Liu, S.M. Zhang, Y.X. Qiu, H. Yang, Phys. B 405, 4668–4672 (2010)CrossRefGoogle Scholar
  9. 9.
    F.K. Yam, Z. Hassan, InGaN: an overview of the growth kinetics, physical properties and emission mechanisms. Superlattices Microstruct. 43, 1–23 (2008)CrossRefGoogle Scholar
  10. 10.
    M.A. Moram, M.E. Vickers, Rep. Prog. Phys. 72, 036502 (2009)CrossRefGoogle Scholar
  11. 11.
    P.F. Fewster, Crit. Rev. Solid State Mater. Sci. 22, 69 (1997)CrossRefGoogle Scholar
  12. 12.
    E. Arslan, M.K. Ozturk, H. Çakmak, P. Demirel, S. Özçelik, E. Ozbay, J. Mater. Sci. Mater. Electron. 24, 4471 (2013)CrossRefGoogle Scholar
  13. 13.
    K. Mayes, A. Yasan, R. McClintock, D. Shiell, S.R. Darvish, P. Kung, M. Razeghi, Appl. Phys. Lett. 84, 7 (2004)CrossRefGoogle Scholar
  14. 14.
    L. Wang, M.I. Nathan, T.H. Lim, M.A. Khan, Q. Chen, Appl. Phys. Lett. 68, 9 (1996)Google Scholar
  15. 15.
    O. Jani, P. Mahala, S.K. Behura, A. Ray, C. Dhanavantri, The effect of indium composition on open-circuit voltage of InGaN thin-film solar cell: an analytical and computer simulation study. AIP Conf. Proc. 1451, 85 (2012)CrossRefGoogle Scholar
  16. 16.
    C.L. Reynolds Jr, A. Patel, J. Appl. Phys. 103, 086102 (2008)CrossRefGoogle Scholar
  17. 17.
    Engin Arslan, Şemsettin Altındal, Süleyman Özçelik, Ekmel Ozbay, J. Appl. Phys. 105, 023705 (2009)CrossRefGoogle Scholar
  18. 18.
    L. Sang, M. Liao, N. Ikeda, Y. Koida, M. Sumiya, Appl. Phys. Lett. 99, 161109 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • H. Çakmak
    • 1
  • Engin Arslan
    • 1
  • M. Rudziński
    • 2
  • P. Demirel
    • 1
  • H. E. Unalan
    • 3
  • W. Strupiński
    • 2
  • R. Turan
    • 4
  • M. Öztürk
    • 5
  • E. Özbay
    • 1
    • 6
    • 7
  1. 1.Nanotechnology Research CenterBilkent UniversityBilkent, AnkaraTurkey
  2. 2.Institute of Electronic Materials TechnologyWarsawPoland
  3. 3.Department of Metallurgical and Materials EngineeringMiddle East Technical UniversityAnkaraTurkey
  4. 4.Department of PhysicsMiddle East Technical UniversityAnkaraTurkey
  5. 5.Department of Physics, Faculty of Science and ArtsGazi UniversityAnkaraTurkey
  6. 6.Department of PhysicsBilkent UniversityBilkent, AnkaraTurkey
  7. 7.Department of Electrical and Electronics EngineeringBilkent UniversityBilkent, AnkaraTurkey

Personalised recommendations