Performance enhancement by different sidewall structures for InGaN-based light-emitting diodes

  • Min-Shuai WangEmail author
  • Xiao-Jing Huang
  • Lan Yang


We demonstrate high-performance GaN-based light-emitting diodes (LEDs) using different sidewall structure. The patterned pyramidal sidewall (PPS) structure in LED is fabricated by crystallographic etching process, which is applying hot phosphoric acid wet etching at the GaN/Al2O3 interface after normal front-side laser scribing. To obtain continuous, regular and bigger pyramidal sidewalls we applied higher temperature and longer time on the LEDs. However, there might be negative effect on the reliability of the PPS-LED by the higher experimental conditions. On the other hand, we applied the new stealth dicing process to form the clean and non-destructive sidewalls. The three times stealth dicing process can get a better well-distributed and shipshape sidewall than one time stealth dicing. The light output power of the PPS-LED had a 39.6 % enhancement compared to the standard LED owing to the larger light-scattering when measured in LED chip form. But the LED with stealth dicing is more reliable than PPS-LED regardless of the crystal quality of the LED.


Total Internal Reflection Optical Microscopy Image Forward Voltage Standard Lead Burning Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by Young Scholar Research Project of Fujian Educational Department in China (No. 2013 JA13187) and Science Foundation of Jimei University in China (No. 2013 C613015).


  1. 1.
    J.-Q. Xi, H. Luo, A.J. Pasquale, J.K. Kim, E.F. Schubert, IEEE Photon. Technol. Lett. 18, 2347 (2006)CrossRefGoogle Scholar
  2. 2.
    S. Chhajed, W. Lee, J. Cho, E.F. Schubert, J.K. Kim, Appl. Phys. Lett. 98, 071102 (2011)CrossRefGoogle Scholar
  3. 3.
    C.-F. Lin, Z.-J. Yang, B.-H. Chin, J.-H. Zheng, J.-J. Dai, B.-C. Shieh, C.-C. Chang, J. Electrochem. Soc. 153, G1020 (2006)CrossRefGoogle Scholar
  4. 4.
    T. Fujii, Y. Gao, R. Sharma, E.L. Hu, S.P. DenBaars, S. Nakamura, Appl. Phys. Lett. 84, 855 (2004)CrossRefGoogle Scholar
  5. 5.
    M.S. Wang, X.J. Huang, Chin. Phys. B 22, 086802 (2013)CrossRefGoogle Scholar
  6. 6.
    C.H. Liu, R.W. Chuang, S.J. Chang, Y.K. Su, L.W. Wu, C.C. Lin, Mat. Sci. Eng. B Solid 112, 10 (2004)CrossRefGoogle Scholar
  7. 7.
    L. Tian, N. Stojanovic, D.Y. Song, A.A. Bernussi, J.M. Berg, M. Holtz, Appl. Phys. Lett. 91, 103115 (2007)CrossRefGoogle Scholar
  8. 8.
    P.A. Shields, C. Liu, M. Nasir, D.W.E. Allsopp, W.N. Wang, Appl. Phys. Lett. 95, 123120 (2009)CrossRefGoogle Scholar
  9. 9.
    J.K. Kim, S. Chhajed, M.F. Schubert, E.F. Schubert, A. Fischer, M.H. Crawford, J. Cho, H. Kim, C. Sone, Adv. Mater. 20, 801 (2008)CrossRefGoogle Scholar
  10. 10.
    X.A. Cao, A.P. Zhang, G.T. Dang, F. Ren, S.J. Pearton, R.J. Shul, L. Zhang, J. Vac. Sci. Technol. A 18, 1144 (2000)CrossRefGoogle Scholar
  11. 11.
    H.G. Kim, H.Y. Kim, H.K. Kim, J.H. Ryu, J.H. Kang, N. Han, P. Uthirakumar, C.-H. Hong, Electrochem. Solid ST. 132, H42–H44 (2010)CrossRefGoogle Scholar
  12. 12.
    C.-F. Lin, C.-M. Lin, K.-T. Chen, W.-C. Huang, M.-S. Lin, J.-J. Dai, R.-H. Jiang, Y.-C. Huang, C.-Y. Chang, Appl. Phys. Lett. 95, 201102 (2009)CrossRefGoogle Scholar
  13. 13.
    D.D. Koleske, A.J. Fischer, A.A. Allerman, C.C. Mitchell, K.C. Cross, S.R. Kurtz, J.J. Figiel, K.W. Fullmer, W.G. Breiland, Appl. Phys. Lett. 81, 1940 (2002)CrossRefGoogle Scholar
  14. 14.
    D.S. Kuo, S.-J. Chang, IEEE Photon. Technol. Lett. 22, 510 (2009)CrossRefGoogle Scholar
  15. 15.
    B. Heying, X.H. Wu, S. Keller, Y. Li, D. Kapolnek, B.P. Keller, S.P. DenMaars, J.S. Speck, Appl. Phys. Lett. 68, 643 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Physics, School of ScienceJimei UniversityXiamenChina

Personalised recommendations