Skip to main content
Log in

Characterization of TiO2 nanoparticles prepared using different surfactants by sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Titania nanoparticles have been prepared using different surfactants such as, acetic acid (AA), oleic acid (OA), oley amine (OM), and a mixture of OA + OM at room temperature by sol–gel method. TiO2 nanoparticles were collected by centrifugation of the precipitate obtained during gel formation. The collected samples were annealed at 550 and 950 °C to study the effect of annealing temperature on the structural and optical properties. The crystal structure and optical properties of titania nanoparticle is investigated by means of X-ray diffraction, Raman spectroscopy, UV–visible spectroscopy, and photoluminescence. After heat treatment at 950 °C, the mixed rutile and anatase phase of TiO2 was revealed for the sample prepared with AA, whereas pure rutile phase was observed for the sample prepared in presence of OA, OM and the mixture of OA + OM. The energy band gap and transmittance of measured for titania nanoparticles was found to be systematically reduced with increase in annealing temperature for each surfactant. The ideality factor decreases with increase in annealing temperature for all surfactants could be related to the voltage dependence of the standard deviation of the distribution of barrier heights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Lihong, Y. Liqun, D. Kejian, Z. Ling, J. Solid State Chem. 184, 1465 (2011)

    Article  Google Scholar 

  2. P. Kaushik, P.M. Tapas, N. Chirantan, C.D. Subhas, Mol. Struct. 1016, 30 (2012)

    Article  Google Scholar 

  3. R. Mechiakh, N.B. Sedrine, M. Karyaoui, R. Chtourou, Appl. Surf. Sci. 257, 5529 (2011)

    Article  Google Scholar 

  4. N.B. Chaure, A.K. Ray, R. Capan, Semicond. Sci. Technol. 20, 788 (2005)

    Article  Google Scholar 

  5. A.K. Hassan, N.B. Chaure, A.K. Ray, A.V. Nabok, S. Habesch, J. Phys. D Appl. Phys. 36, 1120 (2003)

    Article  Google Scholar 

  6. N.S. Godlisten, E. Gideon, V.Q. Dang, N.K. You, HSh Young, H. Askwar, K. Jong-Kil, T.K. Hee, Powder Technol. 217, 489 (2012)

    Article  Google Scholar 

  7. M.A. Khan, M.S. Akhtar, O.-B. Yang, Sol. Energy 84, 2195 (2010)

    Article  Google Scholar 

  8. T. Madhavi, D. Kanjilal, B. Varsha, Appl. Surf. Sci. 258, 7855 (2012)

    Article  Google Scholar 

  9. M. Vishwasa, K.N. Rao, K.V.A. Gowda, R.P.S. Chakradhar, Spectrochim. Acta Part A 83, 614 (2011)

    Article  Google Scholar 

  10. X. Jiaoxing, L. Li, Y. Yan, H. Wang, X. Wang, X. Fu, G. Li, J. Colloid Interface Sci. 318, 29 (2008)

    Article  Google Scholar 

  11. W. Patladda, C. Sumaeth, S. Thammanoon, Colloids Surf. A Physicochem. Eng. Asp. 384, 519 (2008)

    Google Scholar 

  12. D.L. Liao, B.Q. Liao, J. Photochem. Photobiol. A Chem. 187, 363 (2007)

    Article  Google Scholar 

  13. L. Jing, X. Sun, W. Cai, Z. Xu, Y. Du, H. Fu, J. Phys. Chem. Solids 64, 615 (2003)

    Article  Google Scholar 

  14. F.A. Deorsola, D. Vallauri, Powder Technol. 190, 304 (2009)

    Article  Google Scholar 

  15. W. Changhua, Z. Xintong, Sh Changlu, Zh Yanli, Y. Jikai, S. Panpan, L. Xueping, L. Hong, L. Yichun, X. Tengfeng, W. Dejun, J. Colloid Interface Sci. 363, 157 (2011)

    Article  Google Scholar 

  16. A. Naumenko, I. Gnatiuk, N. Smirnova, A. Eremenko, Thin Solid Films 520, 4541 (2012)

    Article  Google Scholar 

  17. S. Music, M. Gotic, M. Ivanda, S. Popovic, A. Turkovic, R. Trojko, A. Sekulic, K. Furic, Mater. Sci. Eng. B47, 33 (1997)

    Article  Google Scholar 

  18. M. Gartner, R. Scurtu, A. Ghita, M. Zaharescu, M. Modreanu, C. Trapalis, M. Kokkoris, G. Kordas, Thin Solid Films 455, 417 (2004)

    Article  Google Scholar 

  19. M.U. Nizam, S.U.A. Shibly, R. Ovali, S. Islam, M.M.R. Mazumder, M.S. Islam, M.J. Uddin, O. Gulseren, E. Bengu, Photochem. Photobiol. A Chem. 254, 25 (2013)

    Article  Google Scholar 

  20. C.M. Mohan, A.K. Tripathi, M.K. Single, S.P. Gairola, S.N. Pandey, A. Aqrawal, Chem. Phys. Lett. 555, 182 (2013)

    Article  Google Scholar 

  21. S. Schattauer, B. Reinhold, S. Albrecht, Ch. Fahrenson, M. Schubert, S. Janietz, D. Neher, Colloid Polym. Sci. 290, 1843 (2012)

    Article  Google Scholar 

  22. I. Stambolova, V. Blaskov, S. Vassilev, M. Shipochka, A. Loukanov, Bull. Mater. Sci. 35(4), 645 (2012)

    Article  Google Scholar 

  23. C.Y. Jimmy, Y. Jiaguo, H. Wingkei, J. Zitao, Z. Lizhi, Chem. Mater. 14, 3808 (2002)

    Article  Google Scholar 

  24. F.B. Li, X.Z. Li, Chemosphere 48, 1103 (2002)

    Article  Google Scholar 

  25. A. Amtout, R. Leonelli, Solid State Commun. 84(3), 349 (1992)

    Article  Google Scholar 

  26. L.G.J.D. Haart, G. Blasse, J. Solid State Chem. 61, 135 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandu B. Chaure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dastan, D., Londhe, P.U. & Chaure, N.B. Characterization of TiO2 nanoparticles prepared using different surfactants by sol–gel method. J Mater Sci: Mater Electron 25, 3473–3479 (2014). https://doi.org/10.1007/s10854-014-2041-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2041-9

Keywords

Navigation