Characterization of TiO2 nanoparticles prepared using different surfactants by sol–gel method

  • Davoud Dastan
  • Priyanka U. Londhe
  • Nandu B. Chaure


Titania nanoparticles have been prepared using different surfactants such as, acetic acid (AA), oleic acid (OA), oley amine (OM), and a mixture of OA + OM at room temperature by sol–gel method. TiO2 nanoparticles were collected by centrifugation of the precipitate obtained during gel formation. The collected samples were annealed at 550 and 950 °C to study the effect of annealing temperature on the structural and optical properties. The crystal structure and optical properties of titania nanoparticle is investigated by means of X-ray diffraction, Raman spectroscopy, UV–visible spectroscopy, and photoluminescence. After heat treatment at 950 °C, the mixed rutile and anatase phase of TiO2 was revealed for the sample prepared with AA, whereas pure rutile phase was observed for the sample prepared in presence of OA, OM and the mixture of OA + OM. The energy band gap and transmittance of measured for titania nanoparticles was found to be systematically reduced with increase in annealing temperature for each surfactant. The ideality factor decreases with increase in annealing temperature for all surfactants could be related to the voltage dependence of the standard deviation of the distribution of barrier heights.


TiO2 Surfactant Oleic Acid Rutile Photocatalytic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    T. Lihong, Y. Liqun, D. Kejian, Z. Ling, J. Solid State Chem. 184, 1465 (2011)CrossRefGoogle Scholar
  2. 2.
    P. Kaushik, P.M. Tapas, N. Chirantan, C.D. Subhas, Mol. Struct. 1016, 30 (2012)CrossRefGoogle Scholar
  3. 3.
    R. Mechiakh, N.B. Sedrine, M. Karyaoui, R. Chtourou, Appl. Surf. Sci. 257, 5529 (2011)CrossRefGoogle Scholar
  4. 4.
    N.B. Chaure, A.K. Ray, R. Capan, Semicond. Sci. Technol. 20, 788 (2005)CrossRefGoogle Scholar
  5. 5.
    A.K. Hassan, N.B. Chaure, A.K. Ray, A.V. Nabok, S. Habesch, J. Phys. D Appl. Phys. 36, 1120 (2003)CrossRefGoogle Scholar
  6. 6.
    N.S. Godlisten, E. Gideon, V.Q. Dang, N.K. You, HSh Young, H. Askwar, K. Jong-Kil, T.K. Hee, Powder Technol. 217, 489 (2012)CrossRefGoogle Scholar
  7. 7.
    M.A. Khan, M.S. Akhtar, O.-B. Yang, Sol. Energy 84, 2195 (2010)CrossRefGoogle Scholar
  8. 8.
    T. Madhavi, D. Kanjilal, B. Varsha, Appl. Surf. Sci. 258, 7855 (2012)CrossRefGoogle Scholar
  9. 9.
    M. Vishwasa, K.N. Rao, K.V.A. Gowda, R.P.S. Chakradhar, Spectrochim. Acta Part A 83, 614 (2011)CrossRefGoogle Scholar
  10. 10.
    X. Jiaoxing, L. Li, Y. Yan, H. Wang, X. Wang, X. Fu, G. Li, J. Colloid Interface Sci. 318, 29 (2008)CrossRefGoogle Scholar
  11. 11.
    W. Patladda, C. Sumaeth, S. Thammanoon, Colloids Surf. A Physicochem. Eng. Asp. 384, 519 (2008)Google Scholar
  12. 12.
    D.L. Liao, B.Q. Liao, J. Photochem. Photobiol. A Chem. 187, 363 (2007)CrossRefGoogle Scholar
  13. 13.
    L. Jing, X. Sun, W. Cai, Z. Xu, Y. Du, H. Fu, J. Phys. Chem. Solids 64, 615 (2003)CrossRefGoogle Scholar
  14. 14.
    F.A. Deorsola, D. Vallauri, Powder Technol. 190, 304 (2009)CrossRefGoogle Scholar
  15. 15.
    W. Changhua, Z. Xintong, Sh Changlu, Zh Yanli, Y. Jikai, S. Panpan, L. Xueping, L. Hong, L. Yichun, X. Tengfeng, W. Dejun, J. Colloid Interface Sci. 363, 157 (2011)CrossRefGoogle Scholar
  16. 16.
    A. Naumenko, I. Gnatiuk, N. Smirnova, A. Eremenko, Thin Solid Films 520, 4541 (2012)CrossRefGoogle Scholar
  17. 17.
    S. Music, M. Gotic, M. Ivanda, S. Popovic, A. Turkovic, R. Trojko, A. Sekulic, K. Furic, Mater. Sci. Eng. B47, 33 (1997)CrossRefGoogle Scholar
  18. 18.
    M. Gartner, R. Scurtu, A. Ghita, M. Zaharescu, M. Modreanu, C. Trapalis, M. Kokkoris, G. Kordas, Thin Solid Films 455, 417 (2004)CrossRefGoogle Scholar
  19. 19.
    M.U. Nizam, S.U.A. Shibly, R. Ovali, S. Islam, M.M.R. Mazumder, M.S. Islam, M.J. Uddin, O. Gulseren, E. Bengu, Photochem. Photobiol. A Chem. 254, 25 (2013)CrossRefGoogle Scholar
  20. 20.
    C.M. Mohan, A.K. Tripathi, M.K. Single, S.P. Gairola, S.N. Pandey, A. Aqrawal, Chem. Phys. Lett. 555, 182 (2013)CrossRefGoogle Scholar
  21. 21.
    S. Schattauer, B. Reinhold, S. Albrecht, Ch. Fahrenson, M. Schubert, S. Janietz, D. Neher, Colloid Polym. Sci. 290, 1843 (2012)CrossRefGoogle Scholar
  22. 22.
    I. Stambolova, V. Blaskov, S. Vassilev, M. Shipochka, A. Loukanov, Bull. Mater. Sci. 35(4), 645 (2012)CrossRefGoogle Scholar
  23. 23.
    C.Y. Jimmy, Y. Jiaguo, H. Wingkei, J. Zitao, Z. Lizhi, Chem. Mater. 14, 3808 (2002)CrossRefGoogle Scholar
  24. 24.
    F.B. Li, X.Z. Li, Chemosphere 48, 1103 (2002)CrossRefGoogle Scholar
  25. 25.
    A. Amtout, R. Leonelli, Solid State Commun. 84(3), 349 (1992)CrossRefGoogle Scholar
  26. 26.
    L.G.J.D. Haart, G. Blasse, J. Solid State Chem. 61, 135 (1986)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Davoud Dastan
    • 1
  • Priyanka U. Londhe
    • 1
  • Nandu B. Chaure
    • 1
  1. 1.Department of PhysicsUniversity of PunePuneIndia

Personalised recommendations