Structural, luminescence and magnetic properties of Mn doped ZnO thin films using spin coating technique



Manganese doped zinc oxide (ZnO) thin films were synthesized for various wt% doping of Mn using sol–gel spin coating technique. The effects of Mn doping on the structural, morphological, compositional, photoluminescence (PL) and magnetic behaviour of ZnO thin films were investigated. Although, Mn doping did not change the lattice constants of the films, the texture coefficient is found to be improved for the films having higher percentage of Mn doping. PL studies reveal that as doping concentration of Mn increases, the intensity of emission peaks corresponding to violet and blue colour increases and the peak position shifts slightly. The saturated magnetic moments are found to decrease with the increase in Mn doping and the reason for such behavior is discussed.


Spintronic Device Deep Level Emission Spin Coating Technique Saturated Magnetic Moment Manganese Dope Zinc Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Y. Liu, T. Wang, X. Sun, Q. Fang, Q. Lv, X. Song, Z. Sun, Appl. Surf. Sci. 257, 6540–6545 (2011)CrossRefGoogle Scholar
  2. 2.
    U. Ilyas, T.L. Tan, P. Lee, R.V. Ramanujan, L. Fengji, S. Zhang, R. Chen, H.D. Sun, R.S. Rawat, J. Magn. Magn. Mater. 344, 171–175 (2013)CrossRefGoogle Scholar
  3. 3.
    X. Zhou, S. Ge, D. Yao, Y. Zuo, Y. Xiao, Phys. B 403, 3336–3339 (2008)CrossRefGoogle Scholar
  4. 4.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019–1022 (2000)CrossRefGoogle Scholar
  5. 5.
    W. Liang, T. Hou, Y. Wang, Y. Zhao, Z. Guo, Y. Li, S.-T. Lee, J. Alloys Compd. 541, 250–255 (2012)CrossRefGoogle Scholar
  6. 6.
    S. Deka, P.A. Joy, Solid State Commun. 142, 190–194 (2007)CrossRefGoogle Scholar
  7. 7.
    X.L. Wang, Q. Shao, C.W. Leung, A. Ruotolo, J. Appl. Phys. 113, 17C301 (2013)Google Scholar
  8. 8.
    K. Sharda, K. Jayanthi, S. Chawla, Appl. Surf. Sci. 256, 2630–2635 (2010)CrossRefGoogle Scholar
  9. 9.
    J. Elanchezhiyan, K.P. Bhuvana, N. Gopalakrishnan, T. Balasubramanian, Mater. Lett. 62, 3379–3381 (2008)CrossRefGoogle Scholar
  10. 10.
    P. Thakur, K.H. Chae, M. Subramanain, R. Jayavel, K. Asokan, J. Korean Phys. Soc. 53, 2821–2825 (2008)CrossRefGoogle Scholar
  11. 11.
    Y.Y. Song, K.S. Park, K.H. Park, S.K. Oh, S.C. Yu, H.J. Kang, K.W. Lee, J. Korean Phys. Soc. 52, 106–111 (2008)CrossRefGoogle Scholar
  12. 12.
    R.N. Gayen, K. Sarkar, S. Hussain, R. Bhar, A.K. Pal, Indian J. Pure Appl. Phys. 49, 470–477 (2011)Google Scholar
  13. 13.
    G.-J. Huang, J.-B. Wang, X.-L. Zhong, G.-C. Zhou, H.-l. Yan, Optoelectron. Lett. 2, 439–442 (2006)CrossRefGoogle Scholar
  14. 14.
    Z. Yang, Z. Zuo, H.M. Zhou, W.P. Beyermann, J.L. Liu, J. Cryst. Growth 314, 97–103 (2011)CrossRefGoogle Scholar
  15. 15.
    J.S. Fang, W.H. Luo, C.H. Hsu, J.C. Yang, T.K. Tsai, J. Electron. Mater. 41, 122–129 (2012)CrossRefGoogle Scholar
  16. 16.
    D. Shuang, J.B. Wang, X.L. Zhong, H.L. Yan, Mater. Sci. Semicond. Proc. 10, 97–102 (2007)CrossRefGoogle Scholar
  17. 17.
    X. Yan, D. Hu, H. Li, L. Li, X. Chong, Y. Wang, Phys. B 406, 3956–3962 (2011)CrossRefGoogle Scholar
  18. 18.
    T. Mahalingam, K.M. Lee, K.H. park, S. Lee, Y. Ahn, J.-Y. Park, K.H. Koh, Nanotechnology 18, 035606–035610 (2007)CrossRefGoogle Scholar
  19. 19.
    K.C. Barick, M. Aslam, V.P. Dravid, D. Bahadur, J. Colloid Interface Sci. 349, 19 (2010)CrossRefGoogle Scholar
  20. 20.
    C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy (Perkin Elmer, Eden Prairie, 1979), pp. 80–84Google Scholar
  21. 21.
    I. Polat, S. Aksu, M. Altunbaş, S. Yılmaz, E. Bacaksız, J. Solid State Chem. 184, 2683–2689 (2011)CrossRefGoogle Scholar
  22. 22.
    L.L. Yang, Q.X. Zhao, M. Willander, J.H. Yang, I. Ivanov, J. Appl. Phys. 105, 53503–53509 (2009)CrossRefGoogle Scholar
  23. 23.
    N.S. Norberg, K.R. Kittilstved, J.E. Amonette, R.K. Kukkadapu, D.A. Schwartz, D.R. Gamelin, J. Am. Chem. Soc. 126, 9387–9398 (2004)CrossRefGoogle Scholar
  24. 24.
    Y.S. Wang, P.J. Thomas, P.J. O’Brien, J. Phys. Chem. B 110, 21412–21415 (2006)CrossRefGoogle Scholar
  25. 25.
    S.M. Abrarov, S.U. Yuldashev, T.W. Kim, Y.H. Kwon, T.W. Kang, Opt. Commun. 259, 378–384 (2006)CrossRefGoogle Scholar
  26. 26.
    A. Jagannatha Reddya, M.K. Kokilab, H. Nagabhushanac, J.L. Raod, B.M. Nagabhushanae, O.D. Jayakumar, I.K. Gopalakrishnan, S.K. Kulshrestha, Phys. B 381, 194–198 (2006)CrossRefGoogle Scholar
  27. 27.
    Y.-M. Hao, S.-Y. Lou, S.-M. Zhou, R.-J. Yuan, G.-Y. Zhu, N. Li, Nanoscale Res. Lett. 7(1), 100 (2012)CrossRefGoogle Scholar
  28. 28.
    M.A. Ruderman, C. Kittel, Phys. Rev. 96, 99–102 (1954)CrossRefGoogle Scholar
  29. 29.
    T. Kasuya, Prog. Theor. Phys. 16, 45–57 (1956)CrossRefGoogle Scholar
  30. 30.
    K. Yoshida, Phys. Rev. 106, 893–898 (1957)CrossRefGoogle Scholar
  31. 31.
    B. Babić-Stojić, D. Milivojević, J. Blanuša, V. Spasojević, N. Bibić, B. Simonović, D. Arandelović, J. Phys. Condens. Matter 20, 235217/1–235217/8 (2008)Google Scholar
  32. 32.
    L.B. Duan, G.H. Rao, Y.C. Wang, J. Yu, T. Wang, J. Appl. Phys. 104, 013909/1–013909/5 (2008)Google Scholar
  33. 33.
    J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173–179 (2005)CrossRefGoogle Scholar
  34. 34.
    T. Yang, Y. Li, M.Y. Zhu, Y.B. Li, J. Huang, H.M. Jin, Y.M. Hu, Mater. Sci. Eng. B. 170, 129–132 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. Ali Fatima
    • 1
  • Suganthi Devadason
    • 2
  • T. Mahalingam
    • 3
  1. 1.Department of PhysicsGovernment Arts CollegeUdumalpetIndia
  2. 2.Thin Film Laboratory, Department of PhysicsKarunya UniversityCoimbatoreIndia
  3. 3.Department of Electrical and Computer EngineeringAjou UniversitySuwonSouth Korea

Personalised recommendations